Vector Function and Space Curves Derivatives and Integrals of Vector Functions Arc Length and Curvature # Vector Functions and Space Curvesf : R → R f:R \to R f : R → R f : R → R m f:R \to R^m f : R → R m f : R n → R f:R^n \to R f : R n → R f : R n → R m f:R^n \to R^m f : R n → R m note (1)
的微分和積分是我們 之前微積分課程
學的東西。(2)
和 (3)
的微分和積分是這學期剩下的時間要學習的。(2)
的微分和積分是 (1)
的直接推廣; (3)
型較為複雜。(4)
的微分會在 高微
的課程會學到。
Vector Functions (2)型函數
- valued Functionsr ( t ) = < f ( t ) , g ( t ) , h ( t ) > = f ( t ) i + g ( t ) j + h ( t ) k r(t) = <f(t),g(t),h(t)> = f(t)i + g(t)j+h(t)k r ( t ) = < f ( t ) , g ( t ) , h ( t ) > = f ( t ) i + g ( t ) j + h ( t ) k ,f , g , h f,g,h f , g , h 為實函數。 Space curve:If f, g, h are continuous real–valued functions, then the orbit of r ( t ) = < f ( t ) , g ( t ) , h ( t ) > r(t) = <f(t),g(t),h(t)> r ( t ) = < f ( t ) , g ( t ) , h ( t ) > is called a space curve. # Derivatives and Integrals of Vector Function# DefineLet r ( t ) = < f ( t ) , g ( t ) , h ( t ) > r(t) = <f(t),g(t),h(t)> r ( t ) = < f ( t ) , g ( t ) , h ( t ) > . Then Δ r ( t ) = < Δ f ( t ) , Δ g ( t ) , Δ h ( t ) > \Delta r(t) = <\Delta f(t),\Delta g(t),\Delta h(t)> Δ r ( t ) = < Δ f ( t ) , Δ g ( t ) , Δ h ( t ) > Here Δ = l i m , d d t , ∫ \Delta = lim,\frac{d}{dt},\int Δ = l i m , d t d , ∫ .
# Arc Length and Curvature# Arc Lengthr ( t ) = < x ( t ) , y ( t ) > r(t) = <x(t),y(t)> r ( t ) = < x ( t ) , y ( t ) > or r ( t ) = < x ( t ) , y ( t ) , z ( t ) > r(t) = <x(t),y(t),z(t)> r ( t ) = < x ( t ) , y ( t ) , z ( t ) > L = ∫ a b ( d x ) 2 + ( d y ) 2 = ∫ a b ( d x d t ) 2 + ( d y d t ) 2 d t = ∫ a b ∣ r ′ ( t ) ∣ d t L = \int^b_a\sqrt{(dx)^2 + (dy)^2} = \int^b_a\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt = \int^b_a|r'(t)|dt L = ∫ a b ( d x ) 2 + ( d y ) 2 = ∫ a b ( d t d x ) 2 + ( d t d y ) 2 d t = ∫ a b ∣ r ′ ( t ) ∣ d t .L = ∫ a b ( d x ) 2 + ( d y ) 2 + ( d z ) 2 = ∫ a b ( d x d t ) 2 + ( d y d t ) 2 + ( d z d t ) 2 d t = ∫ a b ∣ r ′ ( t ) ∣ d t L = \int^b_a\sqrt{(dx)^2 + (dy)^2 + (dz)^2} = \int^b_a\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2} dt = \int^b_a|r'(t)|dt L = ∫ a b ( d x ) 2 + ( d y ) 2 + ( d z ) 2 = ∫ a b ( d t d x ) 2 + ( d t d y ) 2 + ( d t d z ) 2 d t = ∫ a b ∣ r ′ ( t ) ∣ d t .
# Arc length function (Distance function)s ( t ) = ∫ a t ∣ r ′ ( u ) ∣ d u s(t) = \int^t_a|r'(u)|du s ( t ) = ∫ a t ∣ r ′ ( u ) ∣ d u .⇒ d s d t = ∣ r ′ ( t ) ∣ \Rightarrow \frac{ds}{dt} = |r'(t)| ⇒ d t d s = ∣ r ′ ( t ) ∣ = 距離變化率 = 速度
# Reference莊重 - 微積分 (二) Calculus II - 103 學年度