• Vector Function and Space Curves
  • Derivatives and Integrals of Vector Functions
  • Arc Length and Curvature

# Vector Functions and Space Curves

  1. f:RRf:R \to R
  2. f:RRmf:R \to R^m
  3. f:RnRf:R^n \to R
  4. f:RnRmf:R^n \to R^m
note

(1) 的微分和積分是我們 之前微積分課程 學的東西。
(2)(3) 的微分和積分是這學期剩下的時間要學習的。
(2) 的微分和積分是 (1) 的直接推廣; (3) 型較為複雜。
(4) 的微分會在 高微 的課程會學到。

  • Vector Functions (2)型函數 - valued Functions
    r(t)=<f(t),g(t),h(t)>=f(t)i+g(t)j+h(t)kr(t) = <f(t),g(t),h(t)> = f(t)i + g(t)j+h(t)kf,g,hf,g,h 為實函數。
  • Space curve:If f, g, h are continuous real–valued functions,
    then the orbit of r(t)=<f(t),g(t),h(t)>r(t) = <f(t),g(t),h(t)> is called a space curve.

# Derivatives and Integrals of Vector Function

# Define

Let r(t)=<f(t),g(t),h(t)>r(t) = <f(t),g(t),h(t)>.
Then Δr(t)=<Δf(t),Δg(t),Δh(t)>\Delta r(t) = <\Delta f(t),\Delta g(t),\Delta h(t)>
Here Δ=lim,ddt,\Delta = lim,\frac{d}{dt},\int.

# Arc Length and Curvature

# Arc Length

r(t)=<x(t),y(t)>r(t) = <x(t),y(t)> or r(t)=<x(t),y(t),z(t)>r(t) = <x(t),y(t),z(t)>
L=ab(dx)2+(dy)2=ab(dxdt)2+(dydt)2dt=abr(t)dtL = \int^b_a\sqrt{(dx)^2 + (dy)^2} = \int^b_a\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt = \int^b_a|r'(t)|dt.
L=ab(dx)2+(dy)2+(dz)2=ab(dxdt)2+(dydt)2+(dzdt)2dt=abr(t)dtL = \int^b_a\sqrt{(dx)^2 + (dy)^2 + (dz)^2} = \int^b_a\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2} dt = \int^b_a|r'(t)|dt.

# Arc length function (Distance function)

s(t)=atr(u)dus(t) = \int^t_a|r'(u)|du.
dsdt=r(t)\Rightarrow \frac{ds}{dt} = |r'(t)|= 距離變化率 = 速度


# Reference

  • 莊重 - 微積分 (二) Calculus II - 103 學年度
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay