# Functions of Several Variables
f:R2→R or f:R3→R
(1) Domain (2) Range (3) Graph
(4) Level curves (等高線) or Surfaces.
# Limits and Continuity
Given ϵ>0,∃δ>0 such that ∣f(x,y)−L∣<ϵ whenever 0<(x−a)2+(y−b)2<δ and (a,b)∈D
note
- 極限存在必定唯一
- 二維逼近 與 一維逼近 的差別:
- 在二維中,有無限多方向可以逼近到(a,b)
- 逼近時,沿著曲線也可以
- 驗證不存在:
- 只需要尋找 2 個方向,其極限值不一即可
- Polar coordinates
- 驗證存在:定義、夾擠 或是 Polar coordinates.
# Partial Derivatives
# Define
- fx(a,b)=limh→0hf(a+h,b)−f(a,b). (將y=b 固定,把f 看成對a 微分)
- fy(a,b)=limh→0hf(a,b+h)−f(a,b). (將x=a 固定,把f 看成對b 微分)
簡單來說,偏微就是 固定其他變量
,對唯一變量作微分。
# Clairaut's theorem
- If fxy and fyx are continuous on a region D, then fxy(a,b)=fyx(a,b) for and (a,b)∈D.
- fxyy=((fx)y)y,fyxy,fyyx are continuous on a region D,then fxyy(a,b)=fyxy(a,b)=fyyx(a,b) for and (a,b)∈D.
# Tangent Planes and Linear Approximation
A(x−x0)+B(y−y0)+z−z0=0
Let x=x0,then B(y−y0)+z−z0=0 為過 P 點和曲線z=f(x0,y) 相切的直線方程式T1
⇒fy(x0,y0)=T1 的斜率為−B.
Similarly, fx(x0,y0)=T2 的斜率為−A.
- 切面法向量
⟨A,B,1⟩=⟨−fx(x0,y0),−fy(x0,y0),1⟩ - 切面方程式
z−z0=fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)
# The Chain Rule
# Define
z(t)=f(x(t),y(t))⇒dtdz=fxdtdx+fydtdy.
u(t)=f(x(t),y(t),z(t))⇒dtdu=fxdtdx+fydtdy+fzdtdz.
# Implicit Differentiation
If f(x,y,z)=0 and z=g(x,y)
⇒f(x,y,g(x,y))=0⇒fx+fydxdy+fz∂x∂z=0
Since dxdy=0⇒∂x∂z=−fzfx.
Similarly,∂y∂z=−fzfy.
# Directional Derivatives and Gradient Vector
# Define
過點(x0,y0),沿著u 方向的微分,u=⟨a,b⟩,a2+b2=1 方向的微分
Duf(x0,y0)=limh→0hf(OP+hu)−f(OP)=limh→0hf(x0+ha,y0+hb)−f(x0,y0)−f(x0,y0)=g′(0),where g(h)=f(x0+ha,y0+hb)
# Theorem
Duf(x0,y0)=⟨fx(x0,y0),fy(x0,y0)⟩⋅⟨a,b⟩=afx(x0,y0)+bfy(x0,y0)
Remark
If the direction derivative of f at (x0,y0) in any direction u, then f is not necessary differentiable at (x0,y0).
# Define
⟨fx(x0,y0),fy(x0,y0)⟩=:∇f
Duf(x0,y0)=∇f⋅u
Facts
- Duf=∇f⋅u = f 在u 方向的變化率
- maxDuf=∣∇f∣ when u∥∇f
- minDuf=−∣∇f∣ when u∥∇f
- ∇f⊥ level curve.
- ∇f⊥ any curveson the level surface.
- Consider surface Γ:=z=f(x,y). Let g(x,y,z)=f(x,y)−z=0,
則Γ 可當成g 函數的一個 Level surface,此 g 函數的 gradient 為 ∇g=⟨fx,fy,−1⟩.
# Maximum and Minimum Values
f is continuous on a closed and bounded set D.
- There exist absolute minimum and absolute maximum.
- Those extreme points occur at the critical points of f or the boundary of D.
# Lagrange Multipliers
- 極值產生的地方:
f 的 level curve or level surface 和 g 的 level curve or level surface 相切。 - Level curve of f \prep \nabla f
- 結論: Extrma occur when
- ∇f=λ∇g for some λ∈R.
- ∇f=λ∇g+μ∇h for some λ,μ∈R.
# Reference
- 莊重 - 微積分 (二) Calculus II - 103 學年度