# 矩陣觀點下的線性變換

# 基本觀念

# 有序基底

R3\mathbb{R^3} 的標準基底是{e1,e2,e3}\{e_1,e_2,e_3\}
β={e1,e2,e3},γ={e1,e3,e2}\beta = \{e_1,e_2,e_3\}, \gamma = \{e_1,e_3,e_2\}
兩者皆是R3\mathbb{R^3} 的標準基底,但βγ\beta \neq \gamma

# 標準有序基底

Rn\mathbb{R^n} 的標準有序基底是{e1,e2,...,en}\{e_1,e_2,...,e_n\}
Pn(R)P_n(R) 的標準有序基底是{1,x,...,xn}\{1,x,...,x^n\}
Mmxn(R)M_{mxn}(R) 的標準有序基底是{Eij1im,1jn}\{E_{ij} | _{1\leq i \leq m}, _{1 \leq j \leq n} \}

# 表示矩陣

T:VWT:V \rightarrow W 是一個有限維度的線性變換
β={v1,...vn}\beta = \{v_1,...v_n\}, γ={w1,...,wn}\gamma = \{w_1,...,w_n\} 分別是 V 與 W 的標準基底
則,存在aijFa_{ij} \in F 使得T(vi)T(v_i)aijwi\sum a_{ij}w_i

[T]βγ:=(aij)m×n=A\left[ T \right]_{\beta}^{\gamma}:=(a_{ij})_{m\times n} = A 稱為 T (由β\betaγ\gamma) 的表示矩陣

note

V=WV=Wβ=γ[T]β=A\beta = \gamma \Rightarrow \left[ T \right]_{\beta} = A

# 範例們

T:R2R3(a1,a2)(a1+3a2,0,2a14a2)T:\begin{array}{rcl} R^2 & \longrightarrow & R^3 \\ (a_1,a_2) & \mapsto & (a_1+3a_2,0,2a_1-4a_2) \end{array}
β={e1,e2},γ={e1,e2,e3}\beta = \{ e_1,e_2 \}, \gamma = \{ e_1,e_2,e_3 \}
{T(1,0)=(1,0,2)=1e1+0e2+2e3T(0,1)=(3,0,4)=3e1+0e24e3}[T]βγ=[130024]\left\{ \begin{array}{cl} T(1,0) & = (1,0,2) &= 1e_1+0e_2+2e_3 \\ T(0,1) & = (3,0,-4) &= 3e_1+0e_2-4e_3 \end{array} \right \} \Rightarrow \left[ T \right]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 3 \\ 0 & 0 \\ 2 & -4 \end{bmatrix}

T:P2(R)P1(R)f(x)f(x)T:\begin{array}{rcl} P_2(R) & \longrightarrow & P_1(R) \\ f(x) & \mapsto & f'(x) \end{array}
β={1,x,x2},γ={1,x}\beta = \{ 1,x,x^2 \}, \gamma = \{ 1,x \}
{T(1)=0=0×1+0xT(x)=1=1×1+0xT(x2)=2x=0×1+2x}[T]βγ=[010002]\left\{ \begin{array}{cl} T(1) & = 0 &= 0 \times 1 + 0 x \\ T(x) & = 1 &= 1 \times 1 + 0 x \\ T(x^2) & = 2x &= 0 \times1 + 2 x \end{array} \right \} \Rightarrow \left[ T \right]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ \end{bmatrix}

# 線性變換的合成 <-> 矩陣相乘

# 定理

T:VW,U:WZT:V \rightarrow W, U: W \rightarrow Z 是有限維度的線性變換
且其基底分別為α,β,γ\alpha, \beta, \gamma
則,UT:VZU \circ T : V \rightarrow Z 會是一個有限維度的線性變換
且,[UT]αγ=[U]βγ[T]αβ\left[ U \circ T \right]_{\alpha}^{\gamma} = \left[ U \right]_{\beta}^{\gamma} \cdot \left[ T \right]_{\alpha}^{\beta}

# 範例們

T:P1(R)P2(R)f(x)0xf(t)dtT:\begin{array}{rcl} P_1(R) & \longrightarrow & P_2(R) \\ f(x) & \mapsto & \int_{0}^{x}f(t)dt \end{array}
U:P2(R)P1(R)f(x)f(x)U:\begin{array}{rcl} P_2(R) & \longrightarrow & P_1(R) \\ f(x) & \mapsto & f'(x) \end{array}
α={1,x},β={1,x,x2},γ={1,x}\alpha = \{ 1,x \}, \beta = \{ 1,x,x^2 \}, \gamma =\{ 1,x \}
(UT)(ax+b)=ax+b,ax+bP1(R)[UT]αγ=[1001](U \circ T)(ax+b) = ax+b, \forall ax+b \in P_1(R) \Rightarrow \left[ U \circ T \right]_{\alpha}^{\gamma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

In fact

[U]βγ=[010002],[T]αβ=[0010012][U]βγ[T]αβ=[1001]\left[ U \right]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 2 \end{bmatrix}, \left[ T \right]_{\alpha}^{\beta} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \Rightarrow \left[ U \right]_{\beta}^{\gamma} \cdot \left[ T \right]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

T:M2(R)P2(R)(abcd)(a+b)+2dx+bx2T:\begin{array}{rcl} M_2(R) & \longrightarrow & P_2(R) \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \mapsto & (a+b)+2dx+bx^2 \end{array}
U:P2(R)M2(R)f(x)(f(0)f(1)f(2)f(0))U:\begin{array}{rcl} P_2(R) & \longrightarrow & M_2(R) \\ f(x) & \mapsto & \begin{pmatrix} f(0) & f(1) \\ f(2) & f(0) \end{pmatrix} \end{array}
(UT)((abcd))=U(a+b+2dx+bx2)=(a+ba+2b+2da+5b+4da+b)(U \circ T)(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = U(a+b+2dx+bx^2) = \begin{pmatrix} a+b & a+2b+2d \\ a+5b+4d & a+b \end{pmatrix}
[UT]αγ=[1100120215041100]\Rightarrow \left[ U \circ T \right]_{\alpha}^{\gamma} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 2 \\ 1 & 5 & 0 & 4 \\ 1 & 1 & 0 & 0 \end{bmatrix}

In fact

[U]βγ=[100111124100],[T]αβ=[110000020100][U]βγ[T]αβ=[1100120215041100]\left[ U \right]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 1\\ 1 & 2 & 4\\ 1 & 0 & 0 \end{bmatrix}, \left[ T \right]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2\\ 0 & 1 & 0 & 0 \end{bmatrix} \Rightarrow \left[ U \right]_{\beta}^{\gamma} \cdot \left[ T \right]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 2 \\ 1 & 5 & 0 & 4 \\ 1 & 1 & 0 & 0 \end{bmatrix}

# 定義

β={v1,,vn}\beta = \{v_1,\dots,v_n \} 是一組 V 的一組有序基底
x=aiviVx = \sum a_iv_i \in V => 定義xx 的座標向量為 [T]β=(a1a2...an)\left[ T \right]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ ... \\ a_n \end{pmatrix}

V=M2(R),β={1,x,x2},f(x)=4+6x7x2[f]β=(467)V = M_2(R),\beta = \{ 1,x,x^2 \} , f(x) = 4+6x-7x^2 \Rightarrow \left[ f \right]_{\beta} = \begin{pmatrix} 4 \\ 6 \\ -7 \end{pmatrix}
γ={1,x1,(x1)2}[f]γ=(387)\gamma = \{ 1,x-1,(x-1)^2 \} \Rightarrow \left[ f \right]_{\gamma} = \begin{pmatrix} 3 \\ -8 \\ -7 \end{pmatrix}

V=M2(R),β={E11,E12,E21E22}V = M_2(R),\beta = \{ E_{11},E_{12},E_{21}E_{22} \}
A=(1234)V[A]γ=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in V \Rightarrow \left[ A \right]_{\gamma} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}

# 定理

T:VWT:V \rightarrow W 是一個有限維度的線性變換,且β,γ\beta , \gamma 分別是 VVWW 的有序基底。
則,[T(x)]γ=[T]βγ[x]βxV\left[ T(x) \right]_{\gamma} = \left[ T \right]_{\beta}^{\gamma} \left[ x \right]_{\beta} \forall x \in V

T:P2(R)M2(R)f(x)(f(1)f(2)00f(0))[T]βγ=[013000000100]T:\begin{array}{rcl} P_2(R) & \longrightarrow & M_2(R) \\ f(x) & \mapsto & \begin{pmatrix} f(1)-f(2) & 0 \\ 0 & f(0) \end{pmatrix} \end{array} \Rightarrow \left[ T \right]_{\beta}^{\gamma} = \begin{bmatrix} 0 & -1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}
f(x)=1x+x2[f]β=(111),T(f)=[2001][T(f)]γ=(2001)f(x) = 1-x+x^2 \Rightarrow \left[ f \right]_{\beta} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, T(f) = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \left[ T(f) \right]_{\gamma} = \begin{pmatrix} -2 \\ 0 \\ 0 \\ 1 \end{pmatrix}
[T(f)]γ=[T]βγ[f]β(2001)=[013000000100](111)\left[ T(f) \right]_{\gamma} = \left[ T \right]_{\beta}^{\gamma} \left[ f \right]_{\beta} \Rightarrow \begin{pmatrix} -2 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 0 & -1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}

T:P2(R)P1(R)f(x)f(x)[T]βγ=[010002]T:\begin{array}{rcl} P_2(R) & \longrightarrow & P_1(R) \\ f(x) & \mapsto & f'(x) \end{array} \Rightarrow \left[ T \right]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}
f(x)=24x+x2[f]β=(241),T(f)=4+2x[T(f)]γ=(42)f(x) = 2-4x+x^2 \Rightarrow \left[ f \right]_{\beta} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix}, T(f) = -4+2x \Rightarrow \left[ T(f) \right]_{\gamma} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}
[T(f)]γ=[T]βγ[f]β(42)=[010002](241)\left[ T(f) \right]_{\gamma} = \left[ T \right]_{\beta}^{\gamma} \left[ f \right]_{\beta} \Rightarrow \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}\begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix}

# 線性變換的反函數 <-> 反矩陣

# 定義

T:VW,U:WZT:V \rightarrow W, U: W \rightarrow Z 是線性變換,
(TU)(w)=w,wW,(UT)(v)=v,vV(T \circ U)(w) = w , \forall w \in W, (U \circ T)(v) = v , \forall v \in V
則: U,TU,T 互為對方的反變換,計作 T=U1T=U^{-1} 且U=T^

# 範例們

f(x)=xf(x) = x 的反變換f1(x)=x\Rightarrow f^{-1}(x) = x
f(x)=0f(x) = 0 的反變換\Rightarrow 不存在

f(x)=x+2f(x) = x+2 的反變換f1(x)=x2\Rightarrow f^{-1}(x) = x-2
f(x)=3xf(x) = 3x 的反變換f1(x)=13x\Rightarrow f^{-1}(x) = \frac{1}{3}x

f(x)=x2f(x) = x^2 的反變換\Rightarrow 需討論一下
定義域f:Rx0Rx0f1(x)=xf: R_{ x\ge 0} \longrightarrow R_{ x\ge 0} \Rightarrow f^{-1}(x) = \sqrt{x}

f(x)=logxf(x) = logx 的反變換f1(x)=10x\Rightarrow f^{-1}(x) = 10^x
f(x)=lnxf(x) = lnx 的反變換f1(x)=ex\Rightarrow f^{-1}(x) = e^x

f(x)=sinxf(x) = sinx 的反變換f1(x)=sin1x\Rightarrow f^{-1}(x) = sin^{-1}x

note

T 是一個一對一函數 <=> T1T^{-1} 存在

# 定理

T:VWT:V \rightarrow W 是一個有限維度的線性變換
β={v1,...vn}\beta = \{v_1,...v_n\}, γ={w1,...,wn}\gamma = \{w_1,...,w_n\} 分別是VVWW 的有序基底
[T1]γβ=([T]βγ)1\left[ T^{-1} \right]_{\gamma}^{\beta} =(\left[ T \right]_{\beta}^{\gamma})^{-1}

note

dimV=dimWdimV = dimW => 方陣才有可逆矩陣

# 範例們

T:Pn(R)Pn1(R)f(x)f(x)U:Pn1(R)Pn(R)f(x)0xf(t)dtT:\begin{array}{rcl} P_n(R) & \longrightarrow & P_{n-1}(R) \\ f(x) & \mapsto & f'(x) \end{array} U:\begin{array}{rcl} P_{n-1}(R) & \longrightarrow & P_n(R) \\ f(x) & \mapsto & \int^{x}_{0} f(t)dt \end{array}
=> T、U 不互為反變換

note

n=3[T]βγ=[010002],[U]γβ=[0010012][T]βγ[U]γβ=[1001]n = 3 \Rightarrow \left[ T \right]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ \end{bmatrix},\left[ U \right]_{\gamma}^{\beta} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \Rightarrow \left[ T \right]_{\beta}^{\gamma} \left[ U \right]_{\gamma}^{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
但,[U]γβ[T]βγ=[000010001]I3\left[ U \right]_{\gamma}^{\beta} \left[ T \right]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \neq I_3 其不為反變換,因為[T]βγ\left[ T \right]_{\beta}^{\gamma} 不為可逆矩陣 (dimVdimWdimV \neq dimW)

T:P1(R)R2a+bx(a,a+b)U:R2P1(R)(c,d)c+(dc)xT:\begin{array}{rcl} P_1(R) & \longrightarrow & R^2 \\ a+bx & \mapsto & (a,a+b) \end{array} U:\begin{array}{rcl} R^2 & \longrightarrow & P_1(R) \\ (c,d) & \mapsto & c+(d-c)x \end{array}
(TU)(c,d)=T(c+(dc)x)=(c,d)(T \circ U)(c,d) = T(c+(d-c)x) = (c,d)
(UT)(a+bx)=U(a,a+b)=a+bx(U \circ T)(a+bx) = U(a,a+b) = a+bx
[T]βγ=(1011),[U]γβ=(1011)\left[ T \right]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} , \left[ U \right]_{\gamma}^{\beta} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}

([T]βγ)1=[U]γβ([U]γβ)1=[T]βγ(\left[ T \right]_{\beta}^{\gamma})^{-1} =\left[ U \right]_{\gamma}^{\beta} \Leftrightarrow (\left[ U \right]_{\gamma}^{\beta})^{-1} = \left[ T \right]_{\beta}^{\gamma}

[T]β=Rθ=(cosθsinθsinθcosθ)\left[ T \right]_{\beta} = R_{ \theta } = \begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix}
[T1]β=([T]β)1=(cosθsinθsinθcosθ)\Rightarrow \left[ T^{-1} \right]_{\beta} = (\left[ T \right]_{\beta})^{-1} = \begin{pmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{pmatrix}

[T]β=Mθ=(cos2θsin2θsin2θcos2θ)\left[ T \right]_{\beta} = M_{ \theta } = \begin{pmatrix} cos2\theta & sin2\theta \\ sin2\theta & -cos2\theta \end{pmatrix}
[T1]β=([T]β)1=Mθ\Rightarrow \left[ T^{-1} \right]_{\beta} = (\left[ T \right]_{\beta})^{-1} = M_{\theta}

更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay