Limits of the Sequence The Limits of Function Evaluating Limits Analytically # Limits of the SequenceWe hope to find lim n → ∞ a n = ? \lim_{n \to \infty}a_n = ? lim n → ∞ a n = ?
# Define設{ a n } , a n ∈ R , n = N , L ∈ R \{a_n\},a_n \in \mathbb{R},n = N,L\in \mathbb{R} { a n } , a n ∈ R , n = N , L ∈ R , 若∀ ϵ > 0 , ∃ N 0 ∈ N \forall \epsilon > 0 ,\exist N_0 \in \mathbb{N} ∀ ϵ > 0 , ∃ N 0 ∈ N s.t.∣ a n − L ∣ < ϵ |a_n-L|<\epsilon ∣ a n − L ∣ < ϵ if n > N 0 n > N_0 n > N 0 , 則稱數列{ a n } \{a_n\} { a n } 收斂於L L L ,記作lim n → ∞ a n = L \lim_{n \to \infty} a_n = L lim n → ∞ a n = L 或 a n → L ( n → ∞ ) a_n \rightarrow L(n \rightarrow \infty) a n → L ( n → ∞ )
# Define若 lim n → ∞ a n = L \lim_{n \to \infty} a_n = L lim n → ∞ a n = L ,則稱數列{ a n } \{a_n\} { a n } 為收斂 convergent
,反之則為發散 divergent
# Examplefind the limit of the sequences: Ex1.{ ( − 1 ) n } \{ (-1)^n \} { ( − 1 ) n } , Ex2.{ s i n n } \{ sin \; n \} { s i n n } , Ex3.{ 2 n + 5 } \{ 2n+5 \} { 2 n + 5 }
lim n → ∞ ( − 1 ) n \lim_{n \to \infty}(-1)^n lim n → ∞ ( − 1 ) n does not exist (震盪)⇒ { ( − 1 ) n } \Rightarrow \{ (-1)^n \} ⇒ { ( − 1 ) n } is divergent.
lim n → ∞ s i n n \lim_{n \to \infty}sin\; n lim n → ∞ s i n n does not exist⇒ { s i n n } \Rightarrow \{ sin \; n \} ⇒ { s i n n } is divergent.
lim n → ∞ 2 n + 5 = ∞ \lim_{n \to \infty}2n+5 = \infty lim n → ∞ 2 n + 5 = ∞ .The limit does not exist⇒ { 2 n + 5 } \Rightarrow \{ 2n+5 \} ⇒ { 2 n + 5 } is divergent.
# The Limits of Functions# 直觀的角度f ( x ) f(x) f ( x ) is defined, lim x → a f ( x ) = L ( = f ( a ) ) ,\; \lim_{x\to a}f(x) = L ( = f(a)) , lim x → a f ( x ) = L ( = f ( a ) ) f ( x ) f(x) f ( x ) is not defined but lim x → a f ( x ) = L \; \lim_{x\to a}f(x) = L lim x → a f ( x ) = L f ( x ) f(x) f ( x ) is defined but f ( a ) ≠ L , lim x → a f ( x ) = L \; f(a) \neq L , \; \lim_{x\to a}f(x) = L f ( a ) = L , lim x → a f ( x ) = L 左右趨近值不相同 Infinite limits 震盪行為 H ( x ) = { 1 if x > 0 − 1 if x ≤ 0 H(x) = \begin{cases} 1 & \text{ if } x > 0 \\ -1 & \text{ if } x \le 0 \end{cases} H ( x ) = { 1 − 1 if x > 0 if x ≤ 0 lim x → 0 H ( x ) \lim_{x \to 0}H(x) lim x → 0 H ( x ) does not exist
G ( x ) = 1 x 2 G(x) = \frac{1}{x^2} G ( x ) = x 2 1 lim x → 0 G ( x ) = ∞ \lim_{x \to 0}G(x) = \infty lim x → 0 G ( x ) = ∞ does not exist
F ( x ) = s i n ( 1 x ) F(x) = sin(\frac{1}{x}) F ( x ) = s i n ( x 1 ) lim x → 0 F ( x ) \lim_{x \to 0}F(x) lim x → 0 F ( x ) does not exist
# 數列觀點下的函數極限# Define設 A ∈ R A \in \mathbb{R} A ∈ R ,A A A 的導集為{ a ∣ ∃ { a n } ∈ A ∖ { a } s . t . lim n → ∞ a n = a } \{ a | \exists \{ a_n \} \in A \setminus \{a \} \; s.t. \; \lim_{n \to \infty} a_n = a \} { a ∣ ∃ { a n } ∈ A ∖ { a } s . t . lim n → ∞ a n = a } A A A 的導集以A ′ A' A ′ 表示
# DefineA ∈ R f : A → R A \in \mathbb{R} \; f: A \rightarrow \mathbb{R} A ∈ R f : A → R is a function
若所有取值在 A ∖ { a } A \setminus \{ a \} A ∖ { a } 中並收斂到a a a 的數列{ a } n = 1 ∞ \{ a \} ^\infty_{n=1} { a } n = 1 ∞ ,{ f ( a n ) } n = 1 ∞ \{f(a_n)\}^\infty_{n=1} { f ( a n ) } n = 1 ∞ 也會收斂到同一個值 , 則我們說當x x x 趨近於a a a 時,f ( x ) f(x) f ( x ) 的極限存在。
# Proposition若 f (x) 的極限存在,則極限必唯一。換句話說,∃ L ∈ R \exists L \in \mathbb{R} ∃ L ∈ R 滿足對取值於A ∖ { a } A \setminus \{ a \} A ∖ { a } 並收斂到a a a 的數列{ a n } \{ a_n \} { a n } 都有lim n → ∞ = L \lim_{n \to \infty}=L lim n → ∞ = L ,我們稱「當x x x 趨近於a a a 時,f ( x ) f(x) f ( x ) 的極限為L L L 」
# ExampleFind the limit of lim x → 0 f ( x ) \lim_{x \to 0}f(x) lim x → 0 f ( x ) ,where f ( x ) = { s i n ( 1 x ) if x ≠ 0 0 if x = 0 f(x) = \begin{cases} sin(\frac{1}{x}) & \text{ if } x \neq 0 \\ 0 & \text{ if } x = 0 \end{cases} f ( x ) = { s i n ( x 1 ) 0 if x = 0 if x = 0
取 { x n } = { 1 2 n π } ∈ R ∖ { 0 } ( lim n → ∞ 1 2 n π = 0 ) { y n } = { 1 2 n π + π 2 } ∈ R ∖ { 0 } ( lim n → ∞ 1 2 n π + π 2 = 0 ) \begin{matrix} \{x_n\} &= \{ \frac{1}{2n\pi} \} \in \mathbb{R}\setminus \{0\} & (\lim_{n \to \infty} \frac{1}{2n\pi} = 0) \\ \{y_n\} &= \{ \frac{1}{2n\pi+\frac{\pi}{2}} \} \in \mathbb{R}\setminus \{0\} & (\lim_{n \to \infty} \frac{1}{2n\pi+\frac{\pi}{2}} = 0) \end{matrix} { x n } { y n } = { 2 n π 1 } ∈ R ∖ { 0 } = { 2 n π + 2 π 1 } ∈ R ∖ { 0 } ( lim n → ∞ 2 n π 1 = 0 ) ( lim n → ∞ 2 n π + 2 π 1 = 0 )
But lim n → ∞ f ( x n ) = lim n → ∞ s i n ( 2 n π ) = 0 lim n → ∞ f ( y n ) = lim n → ∞ s i n ( 2 n π + π 2 = 1 \begin{matrix} \lim_{n\to \infty}f(x_n) =& \lim_{n\to \infty}sin(2n\pi)&=0 \\ \lim_{n\to \infty}f(y_n) =& \lim_{n\to \infty}sin(2n\pi+\frac{\pi}{2}&=1 \end{matrix} lim n → ∞ f ( x n ) = lim n → ∞ f ( y n ) = lim n → ∞ s i n ( 2 n π ) lim n → ∞ s i n ( 2 n π + 2 π = 0 = 1 ⇒ lim x → 0 f ( x ) \Rightarrow \lim_{x \to 0}f(x) ⇒ lim x → 0 f ( x ) does not exist ( 0 ≠ 1 ) (0 \neq 1) ( 0 = 1 )
# 數學語言# definelim x → a f ( x ) = L ↔ ∀ ϵ > 0 , ∃ δ > 0 s . t . ∣ f ( x ) − L ∣ < ϵ w h e n e v e r 0 < ∣ x − a ∣ < δ \lim_{x\to a}f(x) =L \leftrightarrow \forall \epsilon >0, \exists \delta>0 \; s.t. \;|f(x)-L|<\epsilon \; whenever \; 0<|x-a|< \delta lim x → a f ( x ) = L ↔ ∀ ϵ > 0 , ∃ δ > 0 s . t . ∣ f ( x ) − L ∣ < ϵ w h e n e v e r 0 < ∣ x − a ∣ < δ
# Evaluating Limits Analytically# Limit Laws
Suppose that c is a constant and lim x → a f ( x ) , lim x → a f ( x ) \lim_{x\to a}f(x), \lim_{x\to a}f(x) lim x → a f ( x ) , lim x → a f ( x ) exist. Then
lim x → a ( f ( x ) ± g ( x ) ) = lim x → a f ( x ) ± lim x → a g ( x ) \lim_{x\to a}(f(x) \pm g(x)) = \lim_{x\to a}f(x) \pm \lim_{x\to a}g(x) lim x → a ( f ( x ) ± g ( x ) ) = lim x → a f ( x ) ± lim x → a g ( x ) lim x → a c f ( x ) = c lim x → a f ( x ) \lim_{x\to a}cf(x) = c \lim_{x\to a}f(x) lim x → a c f ( x ) = c lim x → a f ( x ) lim x → a ( f ( x ) g ( x ) ) = lim x → a f ( x ) × lim x → a g ( x ) \lim_{x\to a}(f(x)g(x)) = \lim_{x\to a}f(x) \times \lim_{x\to a}g(x) lim x → a ( f ( x ) g ( x ) ) = lim x → a f ( x ) × lim x → a g ( x ) lim x → a f ( x ) g ( x ) = lim x → a f ( x ) lim x → a g ( x ) i f lim x → a g ( x ) ≠ 0 \lim_{x\to a}\frac{f(x)}{g(x)} = \frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}\; if \; \lim_{x\to a}g(x) \neq 0 lim x → a g ( x ) f ( x ) = l i m x → a g ( x ) l i m x → a f ( x ) i f lim x → a g ( x ) = 0 lim x → a c = c \lim_{x \to a}c = c lim x → a c = c lim x → a x = a \lim_{x \to a}x = a lim x → a x = a lim x → a ( f ( x ) ) n = ( lim x → a f ( x ) ) n , n ∈ N \lim_{x \to a}(f(x))^n = (\lim_{x \to a}f(x))^n ,\; n \in \mathbb{N} lim x → a ( f ( x ) ) n = ( lim x → a f ( x ) ) n , n ∈ N (from 3.)lim x → a ( x n ) = ( lim x → a x ) n = a n , n ∈ N \lim_{x \to a}(x^n) = (\lim_{x \to a}x)^n = a^n, \; n \in \mathbb{N} lim x → a ( x n ) = ( lim x → a x ) n = a n , n ∈ N (from 6. 7.)若 p ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 0 p(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_0 p ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 0 is a polynomial function (多項式函數), 則 lim x → a p ( x ) = p ( a ) \lim_{x \to a}p(x) = p(a) lim x → a p ( x ) = p ( a ) 若 r ( x ) = p ( x ) q ( x ) r(x) = \frac{p(x)}{q(x)} r ( x ) = q ( x ) p ( x ) is a rational function (有理函數). This means p ( x ) p(x) p ( x ) and q ( x ) q(x) q ( x ) are polynomial functions andc ∈ R s . t . g ( c ) ≠ 0 c \in \mathbb{R} \; s.t. \; g(c) \neq 0 c ∈ R s . t . g ( c ) = 0 then lim x → c r ( x ) = lim x → c p ( x ) lim x → c q ( x ) = p ( c ) q ( c ) \lim_{x \to c}r(x) = \frac{\lim_{x \to c}p(x)}{\lim_{x \to c}q(x)} = \frac{p(c)}{q(c)} lim x → c r ( x ) = l i m x → c q ( x ) l i m x → c p ( x ) = q ( c ) p ( c ) Remark f ( x ) = x 2 s i n ( 1 x ) f(x) = x^2sin(\frac{1}{x}) f ( x ) = x 2 s i n ( x 1 ) ,find lim x → 0 f ( x ) \lim_{x \to 0}f(x) lim x → 0 f ( x ) lim x → 0 x 2 s i n ( 1 x ) ≠ lim x → 0 x 2 × lim x → 0 s i n ( 1 x ) \lim_{x \to 0}x^2sin(\frac{1}{x}) \neq \lim_{x \to 0}x^2 \times \lim_{x \to 0}sin(\frac{1}{x}) lim x → 0 x 2 s i n ( x 1 ) = lim x → 0 x 2 × lim x → 0 s i n ( x 1 ) Because lim x → 0 s i n ( 1 x ) \lim_{x \to 0}sin(\frac{1}{x}) lim x → 0 s i n ( x 1 ) does not exist
# Thm運用 左右極限 來判斷 極限是否存在 lim x → a f ( x ) = L ⇔ lim x → a + f ( x ) = lim x → a − f ( x ) = L \lim_{x \to a}f(x)=L \Leftrightarrow \lim_{x \to a^+}f(x) = \lim_{x \to a^-}f(x) = L lim x → a f ( x ) = L ⇔ lim x → a + f ( x ) = lim x → a − f ( x ) = L
Prove that lim x → 0 ∣ x ∣ x \lim_{x\to 0 }\frac{|x|}{x} lim x → 0 x ∣ x ∣ does not exist
∣ x ∣ = { x if x ≥ 0 − x if x < 0 ⇒ ∣ x ∣ x = { 1 if x ≥ 0 − 1 if x < 0 |x| = \begin{cases} x &\text{ if } x \ge 0 \\ -x &\text{ if } x < 0 \end{cases} \; \Rightarrow \frac{|x|}{x} = \begin{cases} 1 &\text{ if } x \ge 0 \\ -1 &\text{ if } x < 0 \end{cases} ∣ x ∣ = { x − x if x ≥ 0 if x < 0 ⇒ x ∣ x ∣ = { 1 − 1 if x ≥ 0 if x < 0 ∵ lim x → 0 + ∣ x ∣ x = 1 \because \lim_{x \to 0^+} \frac{|x|}{x}=1 ∵ lim x → 0 + x ∣ x ∣ = 1 and lim x → 0 − ∣ x ∣ x = − 1 \lim_{x \to 0^-} \frac{|x|}{x}=-1 lim x → 0 − x ∣ x ∣ = − 1 ∴ lim x → 0 ∣ x ∣ x \therefore \lim_{x \to 0} \frac{|x|}{x} ∴ lim x → 0 x ∣ x ∣ does not exist
f ( x ) = { x − 3 if x ≥ 3 6 − 2 x if x < 3 f(x) = \begin{cases} \sqrt{x-3} &\text{ if } x \ge 3 \\ 6-2x &\text{ if } x < 3 \end{cases} f ( x ) = { x − 3 6 − 2 x if x ≥ 3 if x < 3 Find lim x → 3 f ( x ) \lim_{x\to 3}f(x) lim x → 3 f ( x )
lim x → 3 + f ( x ) = lim x → 3 + x − 3 = 0 \lim_{x \to 3^+}f(x) = \lim_{x \to 3^+}\sqrt{x-3} = 0 lim x → 3 + f ( x ) = lim x → 3 + x − 3 = 0 lim x → 3 − f ( x ) = lim x → 3 − 6 − 2 x = 0 \lim_{x \to 3^-}f(x) = \lim_{x \to 3^-}6-2x = 0 lim x → 3 − f ( x ) = lim x → 3 − 6 − 2 x = 0 ⇒ lim x → 3 f ( x ) = 0 \Rightarrow \lim_{x\to 3}f(x) = 0 ⇒ lim x → 3 f ( x ) = 0
# ThmIf lim x → a ∣ f ( x ) ∣ = 0 \lim_{x\to a}|f(x)| = 0 lim x → a ∣ f ( x ) ∣ = 0 then lim x → a f ( x ) = 0 \lim_{x\to a}f(x) = 0 lim x → a f ( x ) = 0
Remark If L ≠ 0 L \neq 0 L = 0 and lim x → a ∣ f ( x ) ∣ = L \lim_{x\to a}|f(x)| = L lim x → a ∣ f ( x ) ∣ = L then this Thm fails.
# ThmIf f f f and g g g are two function such that lim x → a g ( x ) = L \lim_{x\to a}g(x) = L lim x → a g ( x ) = L and lim x → L f ( L ) \lim_{x\to L}f(L) lim x → L f ( L ) , then lim x → a ( f ∘ g ) ( x ) = lim x → a f ( g ( x ) ) = f ( L ) \lim_{x\to a}(f \circ g)(x)= \lim_{x\to a}f(g(x)) = f(L) lim x → a ( f ∘ g ) ( x ) = lim x → a f ( g ( x ) ) = f ( L )
Example Let f ( x ) = s i n x , g ( x ) = x 2 f(x) = sin x , g(x) = x^2 f ( x ) = s i n x , g ( x ) = x 2
( f ∘ g ) ( x ) = f ( g ( x ) ) = s i n x 2 (f \circ g)(x) = f(g(x)) = sin x^2 ( f ∘ g ) ( x ) = f ( g ( x ) ) = s i n x 2 ( g ∘ f ) ( x ) = g ( f ( x ) ) = s i n 2 x (g \circ f)(x) = g(f(x)) = sin^2 x ( g ∘ f ) ( x ) = g ( f ( x ) ) = s i n 2 x Remark s i n − 1 x ≠ 1 s i n x ⇒ f ( x ) = s i n − 1 x sin^{-1} x \neq \frac{1}{sin x} \Rightarrow f(x) = sin^{-1}x s i n − 1 x = s i n x 1 ⇒ f ( x ) = s i n − 1 x is the inverse function of f ( x ) = s i n x f(x) = sin x f ( x ) = s i n x
# ThmIf f f f and g g g are two functions defined on I I I and a ∈ I a \in I a ∈ I (except possibly at a a a ) and f ( x ) ≤ g ( x ) f(x) \le g(x) f ( x ) ≤ g ( x ) on I ∖ { a } , lim x → a f ( x ) , lim x → a g ( x ) I \setminus \{a\},\; \lim_{x\to a}f(x),\; \lim_{x\to a}g(x) I ∖ { a } , lim x → a f ( x ) , lim x → a g ( x ) exist then lim x → a f ( x ) ≤ lim x → a g ( x ) \lim_{x\to a}f(x)\le \lim_{x\to a}g(x) lim x → a f ( x ) ≤ lim x → a g ( x )
# The Squeeze Thm
If f ( x ) ≤ h ( x ) ≤ g ( x ) f(x) \le h(x) \le g(x) f ( x ) ≤ h ( x ) ≤ g ( x ) is near a (except possibly at a a a ) and lim x → a f ( x ) = L = lim x → a g ( x ) \lim_{x\to a}f(x) = L = \lim_{x\to a}g(x) lim x → a f ( x ) = L = lim x → a g ( x ) then lim x → a h ( x ) = L \lim_{x\to a}h(x) = L lim x → a h ( x ) = L
f ( x ) = { x 2 s i n 1 x if x ≠ 0 0 if x = 0 f(x) = \begin{cases} x^2sin\frac{1}{x} &\text{ if } x \neq 0 \\ 0 &\text{ if } x = 0 \end{cases} f ( x ) = { x 2 s i n x 1 0 if x = 0 if x = 0 Find lim x → 0 f ( x ) \lim_{x\to 0}f(x) lim x → 0 f ( x )
∵ − 1 ≤ s i n 1 x ≤ 1 ∀ x ∈ R ∖ { 0 } \because -1\le sin\frac{1}{x} \le 1 \; \forall x \in \mathbb{R} \setminus \{ 0 \} ∵ − 1 ≤ s i n x 1 ≤ 1 ∀ x ∈ R ∖ { 0 } ⇒ − x 2 ≤ x 2 s i n 1 x ≤ x 2 ∀ x ∈ R ∖ { 0 } \Rightarrow -x^2 \le x^2sin\frac{1}{x} \le x^2 \; \forall x \in \mathbb{R} \setminus \{ 0 \} ⇒ − x 2 ≤ x 2 s i n x 1 ≤ x 2 ∀ x ∈ R ∖ { 0 } ∵ lim x → 0 ( − x 2 ) = 0 = lim x → 0 x 2 ∴ lim x → 0 x 2 s i n 1 x = 0 \because \lim_{x\to 0}(-x^2) = 0 = \lim_{x\to 0}x^2 \; \therefore \; \lim_{x\to 0}x^2sin\frac{1}{x} = 0 ∵ lim x → 0 ( − x 2 ) = 0 = lim x → 0 x 2 ∴ lim x → 0 x 2 s i n x 1 = 0 (by the Squeeze Thm)
Prove that lim x → 0 s i n x x = 1 \lim_{x \to 0}\frac{sin x}{x} = 1 lim x → 0 x s i n x = 1
If 0 < x < π 2 0<x<\frac{\pi}{2} 0 < x < 2 π then s i n θ < θ < t a n θ sin \theta < \theta < tan \theta s i n θ < θ < t a n θ , we have
By s i n θ < θ ⇒ s i n θ θ < 1 sin \theta < \theta \Rightarrow \frac{sin \theta}{\theta} < 1 s i n θ < θ ⇒ θ s i n θ < 1 By θ < t a n θ = s i n θ c o s θ ⇒ c o s θ < s i n θ θ \theta < tan\theta = \frac{sin \theta}{cos \theta} \Rightarrow cos\theta < \frac{sin\theta}{\theta} θ < t a n θ = c o s θ s i n θ ⇒ c o s θ < θ s i n θ 由 1. 2. ⇒ c o s θ < s i n θ θ < 1 \Rightarrow cos\theta < \frac{sin\theta}{\theta}<1 ⇒ c o s θ < θ s i n θ < 1 ∵ lim x → 0 + c o s x = 1 = lim x → 0 + 1 \because \lim_{x\to 0^+}cosx = 1 = \lim_{x\to 0^+} 1 ∵ lim x → 0 + c o s x = 1 = lim x → 0 + 1 ∴ \therefore ∴ By the Squeeze Thm. lim x → 0 + s i n x x = 1 \lim_{x\to 0^+}\frac{sin x}{x} = 1 lim x → 0 + x s i n x = 1
If − π 2 < x < 0 \frac{-\pi}{2}<x<0 2 − π < x < 0 let y = − x > 0 y = -x > 0 y = − x > 0 ⇒ 0 < y < π 2 ⇒ lim y → 0 + s i n y y = 1 \Rightarrow 0 < y < \frac{\pi}{2} \Rightarrow \lim_{y\to 0^+}\frac{sin y}{y} = 1 ⇒ 0 < y < 2 π ⇒ lim y → 0 + y s i n y = 1 ∵ y → 0 + ⇒ − x → 0 + ⇒ x → 0 − \because y \rightarrow 0^+\Rightarrow -x \rightarrow 0^+ \Rightarrow x \rightarrow 0^- ∵ y → 0 + ⇒ − x → 0 + ⇒ x → 0 −
∴ lim y → 0 + s i n y y = lim x → 0 − s i n ( − x ) − x = lim x → 0 − − s i n x − x = lim x → 0 − s i n x x = 1 \therefore \lim_{y\to 0^+}\frac{sin y}{y} = \lim_{x\to 0^-}\frac{sin (-x)}{-x} = \lim_{x\to 0^-}\frac{-sin x}{-x} = \lim_{x\to 0^-}\frac{sin x}{x} = 1 ∴ lim y → 0 + y s i n y = lim x → 0 − − x s i n ( − x ) = lim x → 0 − − x − s i n x = lim x → 0 − x s i n x = 1
⇒ lim x → 0 s i n x x = 1 \Rightarrow \lim_{x\to 0}\frac{sin x}{x} = 1 ⇒ lim x → 0 x s i n x = 1
lim x → 0 1 − c o s x x \lim_{x\to 0}\frac{1-cosx}{x} lim x → 0 x 1 − c o s x lim x → 0 t a n x x \lim_{x\to 0}\frac{tanx}{x} lim x → 0 x t a n x lim x → 0 s i n ( a x ) x , a ∈ R \lim_{x\to 0}\frac{sin(ax)}{x}, a\in \mathbb{R} lim x → 0 x s i n ( a x ) , a ∈ R lim x → 0 s i n x 2 x \lim_{x\to 0}\frac{sinx^2}{x} lim x → 0 x s i n x 2 lim x → 0 x s i n x 1 − c o s x \lim_{x\to 0}\frac{xsinx}{1-cosx} lim x → 0 1 − c o s x x s i n x lim x → 0 ( 1 − c o s x x ⋅ 1 + c o s x 1 + c o s x ) = lim x → 0 1 − c o s 2 x x ( 1 + c o s x ) = lim x → 0 ( s i n x x ) ( s i n x 1 + c o s x ) = 1 ⋅ 0 = 0 \lim_{x\to 0}\left ( \frac{1-cosx}{x}\cdot \frac{1+cosx}{1+cosx} \right ) = \lim_{x\to 0}\frac{1-cos^2x}{x(1+cosx)} = \lim_{x\to 0}\left ( \frac{sin x}{x} \right )\left ( \frac{sin x}{1+cosx} \right ) = 1 \cdot 0 = 0 lim x → 0 ( x 1 − c o s x ⋅ 1 + c o s x 1 + c o s x ) = lim x → 0 x ( 1 + c o s x ) 1 − c o s 2 x = lim x → 0 ( x s i n x ) ( 1 + c o s x s i n x ) = 1 ⋅ 0 = 0
lim x → 0 t a n x x = lim x → 0 ( s i n x x ⋅ 1 c o s x ) = 1 ⋅ 1 = 1 \lim_{x\to 0}\frac{tan x}{x} = \lim_{x\to 0}\left ( \frac{sin x}{x} \cdot \frac{1}{cosx} \right ) = 1 \cdot 1 = 1 lim x → 0 x t a n x = lim x → 0 ( x s i n x ⋅ c o s x 1 ) = 1 ⋅ 1 = 1
lim x → 0 s i n a x x = lim x → 0 ( s i n a x a x ⋅ a ) = 1 ⋅ a = a \lim_{x\to 0}\frac{sin ax}{x} = \lim_{x\to 0}\left ( \frac{sin ax}{ax} \cdot a \right ) = 1 \cdot a = a lim x → 0 x s i n a x = lim x → 0 ( a x s i n a x ⋅ a ) = 1 ⋅ a = a
lim x → 0 s i n 2 x x = lim x → 0 ( s i n 2 x x 2 ⋅ x ) = 1 ⋅ 0 = 0 \lim_{x\to 0}\frac{sin^2 x}{x} = \lim_{x\to 0}\left ( \frac{sin^2 x}{x^2} \cdot x \right ) = 1 \cdot 0 = 0 lim x → 0 x s i n 2 x = lim x → 0 ( x 2 s i n 2 x ⋅ x ) = 1 ⋅ 0 = 0
lim x → 0 ( x s i n x 1 − c o s x ⋅ 1 + c o s x 1 + c o s x ) = lim x → 0 x s i n x ( 1 + c o s x ) s i n 2 x = lim x → 0 x ( 1 + c o s x ) s i n x \lim_{x\to 0}\left ( \frac{xsinx}{1-cosx} \cdot \frac{1+cosx}{1+cosx} \right ) = \lim_{x\to 0}\frac{xsinx(1+cosx)}{sin^2x} = \lim_{x\to 0}\frac{x(1+cosx)}{sinx} lim x → 0 ( 1 − c o s x x s i n x ⋅ 1 + c o s x 1 + c o s x ) = lim x → 0 s i n 2 x x s i n x ( 1 + c o s x ) = lim x → 0 s i n x x ( 1 + c o s x ) = lim x → 0 ( x s i n x ⋅ ( 1 + c o s x ) ) = 1 ⋅ 2 = 2 = \lim_{x\to 0}\left ( \frac{x}{sinx} \cdot (1+cosx) \right ) = 1 \cdot 2 = 2 = lim x → 0 ( s i n x x ⋅ ( 1 + c o s x ) ) = 1 ⋅ 2 = 2
# Reference蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109