• Trigonometric substitution
  • Half-Angle Substitution
  • Integration of Rational Functions by Partial Fractions

# Trigonometric substitution

含有 a2x2\sqrt{a^2-x^2}a2+x2\sqrt{a^2+x^2}x2a2\sqrt{x^2-a^2} 的積分 (a>0),可用以下三種方式代換:

  1. a2x2\sqrt{a^2-x^2} 的形式,取x=asinθ,π2<θ<π2x=asin \theta ,\; -\frac{\pi}{2}< \theta < \frac{\pi}{2},則: a2x2=acosθ\sqrt{a^2-x^2} = acos\theta
  2. a2+x2\sqrt{a^2+x^2} 的形式,取x=atanθ,π2<θ<π2x=atan \theta ,\; -\frac{\pi}{2}< \theta < \frac{\pi}{2},則: a2+x2=asecθ\sqrt{a^2+x^2} = asec\theta
  3. x2a2\sqrt{x^2-a^2} 的形式,取x=asecθ,0θ<π2orπθ<32πx=asec \theta ,\; 0 \le \theta < \frac{\pi}{2} \; or \; \pi \le \theta < \frac{3}{2}\pi,則: x2a2=atanθ\sqrt{x^2-a^2} = atan\theta
  1. 9x2x2dx\int \frac{\sqrt{9-x^2}}{x^2}dx
  2. baa2x2dx\int \frac{b}{a}\sqrt{a^2-x^2}dx
  3. 1x2x2+4dx\int \frac{1}{x^2\sqrt{x^2+4}}dx
  4. 1x2a2dx\int \frac{1}{\sqrt{x^2-a^2}}dx
  5. x3(4x2+9)32dx\int \frac{x^3}{(4x^2+9)^{\frac{3}{2}}}dx
  6. x32xx2dx\int \frac{x}{\sqrt{3-2x-x^2}}dx

Let x=3sinθ,π2θπ2dx=3cosθdθx = 3sin\theta ,-\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \Rightarrow dx = 3cos\theta d \theta

9x2x2dx=3cosθ9sin2θ3cosθdθ=cot2θdθ=(csc2θ1)dθ=cotθθ+k=9x2xsin1(x3)+k\int \frac{\sqrt{9-x^2}}{x^2}dx = \int \frac{3cos\theta}{9sin^2\theta} \cdot 3cos\theta d \theta = \int cot^2\theta d \theta = \int (csc^2\theta -1) d \theta \\ = -cot \theta - \theta + k = -\frac{\sqrt{9-x^2}}{x} - sin^{-1}(\frac{x}{3})+k

Let x=asinθ,π2θπ2dx=acosθdθx = asin\theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \Rightarrow dx = acos\theta d\theta
baa2x2dx=baacosθacosθdθ=abcos2θdθ=ab2(1+cos2θ)dθ=ab2(θ+12sin2θ)+k=ab2(sin1(xa+xa2a2x2)+k\int \frac{b}{a}\sqrt{a^2-x^2}dx = \frac{b}{a}\int acos\theta acos\theta d\theta = ab \int cos^2\theta d\theta = \frac{ab}{2}\int (1+cos2\theta)d\theta = \frac{ab}{2}(\theta + \frac{1}{2}sin2\theta) + k = \frac{ab}{2}(sin^{-1}(\frac{x}{a} + \frac{x}{a^2}\sqrt{a^2-x^2})+k

Let x=2tanθdx=2sec2θdθx = 2tan \theta \Rightarrow dx = 2sec^2\theta d \theta
1x2x2+4dx=14tan2θ2secθ(2sec2θdθ)=14secθtan2θdθ=14cosθsin2θdθ=14(sinθ)2d(sinθ)=14sin1θ+k=14x2+4x+k\therefore \int \frac{1}{x^2\sqrt{x^2+4}}dx = \int \frac{1}{4tan^2\theta \cdot 2sec\theta}(2sec^2\theta d\theta) = \frac{1}{4}\int \frac{sec\theta}{tan^2\theta}d\theta = \frac{1}{4}\frac{cos\theta}{sin^2\theta} d\theta= \frac{1}{4}\int (sin\theta)^{-2}d(sin\theta) = -\frac{1}{4}sin^{-1}\theta+k = -\frac{1}{4}\frac{\sqrt{x^2+4}}{x}+k

Let x=asecθdx=atanθsecθdθx = asec\theta \Rightarrow dx = atan\theta sec\theta d\theta
1x2a2dx=1atanθatanθsecθdθ=secθdθ=lnsecθ+tanθ+k=lnxa+x2a2a+k\int \frac{1}{\sqrt{x^2-a^2}}dx = \int \frac{1}{atan\theta}atan\theta sec\theta d\theta = \int sec\theta d\theta = ln|sec\theta + tan\theta|+k = ln|\frac{x}{a}+\frac{\sqrt{x^2-a^2}}{a}|+k
PS.=lnx+x2a2lna+k=lnx+x2a2+k= ln|x+\sqrt{x^2-a^2}|-lna+k = ln|x+\sqrt{x^2-a^2}|+k

Let x=32tanθdx=32sec2θdθx = \frac{3}{2}tan\theta \Rightarrow dx = \frac{3}{2}sec^2\theta d\theta
x3(4x2+9)32dx=278tan3θ27sec3θ32sec2θdθ=316tan3θsecθdθ=316sin3θcos2θdθ=316sin2θcos2θdθ=3161cos2θcos2θd(cosθ)=316(1(cosθ)2)d(cosθ)=316(cosθ+1cosθ)+k=316(34x2+9+4x2+93)+k\int \frac{x^3}{(4x^2+9)^{\frac{3}{2}}}dx = \int \frac{\frac{27}{8}tan^3\theta}{27sec^3\theta} \cdot \frac{3}{2}sec^2\theta d\theta = \frac{3}{16}\int \frac{tan^3\theta}{sec\theta}d\theta = \frac{3}{16}\int \frac{sin^3\theta}{cos^2\theta}d\theta \\= \frac{3}{16}\int \frac{sin^2\theta}{cos^2\theta}d\theta = \frac{3}{16}\int \frac{1-cos^2\theta}{cos^2\theta}d(cos\theta) = \frac{3}{16}\int (1-(cos\theta)^{-2})d(cos\theta) \\= \frac{3}{16}(cos\theta + \frac{1}{cos\theta})+k = \frac{3}{16}(\frac{3}{\sqrt{4x^2+9}} + \frac{\sqrt{4x^2+9}}{3})+k

Let x+1=2sinθdx=2cosθdθx+1 = 2sin\theta \Rightarrow dx = 2cos\theta d\theta
x32xx2dx=2sinθ12cosθ2cosθdθ=(2sinθ1)dθ=2cosθθ+k=32xx2sin1(x+12+k\int \frac{x}{\sqrt{3-2x-x^2}}dx = \int \frac{2sin\theta -1}{2cos\theta} 2cos\theta d\theta = \int (2sin\theta -1)d\theta \\= -2cos\theta - \theta +k = -\sqrt{3-2x-x^2} - sin^{-1}(\frac{x+1}{2}+k

# Half-Angle Substitution

Let t=tanx2t = tan\frac{x}{2},Then:

  1. sinx2=t1+t2sin\frac{x}{2} = \frac{t}{\sqrt{1+t^2}}cosx2=11+t2cos\frac{x}{2} = \frac{1}{\sqrt{1+t^2}}.
  2. sinx=2sinx2cosx2=2t1+t2sinx = 2sin\frac{x}{2}cos\frac{x}{2} = \frac{2t}{1+t^2}.
  3. cosx=2cos2x21=1t21+t2cosx = 2cos^2\frac{x}{2} -1 = \frac{1-t^2}{1+t^2}.
  4. dt=12sec2x2dx=1+t22dxdt = \frac{1}{2}sec^2\frac{x}{2}dx = \frac{1+t^2}{2}dxdx=21+t2dt\therefore dx = \frac{2}{1+t^2}dt
  1. 11+sinx+cosxdx\int \frac{1}{1+sinx+cosx}dx
  2. 11+sinxcosxdx\int \frac{1}{1+sinx-cosx}dx

Let t=tanx2sinx=2t1+t2,cosx=1t21+t2,dx=21+t2dtt = tan\frac{x}{2} \Rightarrow sinx = \frac{2t}{1+t^2}, cosx = \frac{1-t^2}{1+t^2},dx = \frac{2}{1+t^2}dt
11+sinx+cosxdx=11+2t1+t2+1t21+t221+t2dt=21+t2+2t+1t2dt=1t+1dt=lnt+1+k=lntanx2+1+k\int \frac{1}{1+sinx+cosx}dx = \int \frac{1}{1+\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2}} \frac{2}{1+t^2}dt = \int \frac{2}{1+t^2+2t+1-t^2} dt \\= \int \frac{1}{t+1}dt = ln|t+1|+k = ln|tan\frac{x}{2}+1|+k

Let t=tanx2sinx=2t1+t2,cosx=1t21+t2,dx=21+t2dtt = tan\frac{x}{2} \Rightarrow sinx = \frac{2t}{1+t^2}, cosx = \frac{1-t^2}{1+t^2},dx = \frac{2}{1+t^2}dt
11+sinxcosxdx=11+2t1+t21t21+t221+t2dt=21+t2+2t1+t2dt=1t(t+1)dt=(1t+1t+1)dt=lntlnt+1+k=lntanx2lntanx2+1+k\int \frac{1}{1+sinx-cosx}dx = \int \frac{1}{1+\frac{2t}{1+t^2}-\frac{1-t^2}{1+t^2}} \frac{2}{1+t^2}dt = \int \frac{2}{1+t^2+2t-1+t^2} dt = \int \frac{1}{t(t+1)}dt = \int (\frac{1}{t}+\frac{-1}{t+1}) dt \\= ln|t| - ln|t+1|+k = ln|tan\frac{x}{2}| - ln|tan\frac{x}{2}+1|+k

13+cosxdx\int \frac{1}{3+cosx} dx

Let t=tanx2cosx=1t21+t2,dx=21+t2dtt = tan\frac{x}{2} \Rightarrow cosx = \frac{1-t^2}{1+t^2},dx = \frac{2}{1+t^2}dt
13+cosxdx=13+1t21+t221+t2dt=23+t2+1t2dt=12+t2dt\int \frac{1}{3+cosx} dx = \int \frac{1}{3+\frac{1-t^2}{1+t^2}} \frac{2}{1+t^2}dt = \int \frac{2}{3+t^2+1-t^2}dt = \int \frac{1}{2+t^2}dt
Let t=2tanθdt=2sec2θdθ,θ=tan1(12t)t = \sqrt{2}tan\theta \Rightarrow dt = \sqrt{2}sec^2\theta d\theta , \theta = tan^{-1}(\frac{1}{\sqrt{2}}t)
12+t2dt=12+2tanθ2sec2θdθ=2sec2θ2sec2θdθ=12dθ=12θ+k=12tan1(t2)+k=12tan1(tanx22)+k\int \frac{1}{2+t^2}dt = \int \frac{1}{2+2tan\theta}\sqrt{2}sec^2\theta d\theta = \int \frac{\sqrt{2}sec^2\theta}{2sec^2\theta}d\theta = \int \frac{1}{\sqrt{2}}d\theta = \frac{1}{\sqrt{2}}\theta+k \\= \frac{1}{\sqrt{2}}tan^{-1}(\frac{t}{\sqrt{2}})+k = \frac{1}{\sqrt{2}}tan^{-1}(\frac{tan\frac{x}{2}}{\sqrt{2}})+k

# Integration of Rational Functions by Partial Fractions

Case 1
Improper (假分數): P(x)Q(x)dx=M(x)dx+r(x)Q(x)dx\int \frac{P(x)}{Q(x)}dx = \int M(x)dx + \int \frac{r(x)}{Q(x)}dxr(x)Q(x)\frac{r(x)}{Q(x)} 為 Proper 進入 Case 2。
Case 2
Proper (真分數),將 Q(x)Q(x) 因式分解:

  1. 不可分解,則進行配方後,使用三角代換法
  2. 可分解為(ax+b)nor(ax2+bx+c)n(ax+b)^n \; or \;(ax^2+bx+c)^n,則進入 Case 3。

Case 3

  • 每個(ax+b)n(ax+b)^n 可對應到A1ax+b+A2(ax+b)2+...+An(ax+b)n\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+...+\frac{A_n}{(ax+b)^n}.
  • 每個(ax2+bx+c)n(ax^2+bx+c)^n 可對應到A1x+B1ax2+bx+c+A2x+B2(ax2+bx+c)2+...+Anx+Bn(ax2+bx+c)n\frac{A_1x+B_1}{ax^2+bx+c}+\frac{A_2x+B_2}{(ax^2+bx+c)^2}+...+\frac{A_nx+B_n}{(ax^2+bx+c)^n}.
    比較係數後,找出Ai,Bifori{1,2,...,n}A_i,B_i \; for \; i\in \{ 1,2,...,n \},再積分它!!!
三角代換,常用公式
  1. 1a2+x2dx=1atan1(xa)+k\int \frac{1}{a^2+x^2}dx = \frac{1}{a}tan^{-1}(\frac{x}{a})+k
  2. 1a2x2dx=sin1(xa)+k\int \frac{1}{\sqrt{a^2-x^2}}dx = sin^{-1}(\frac{x}{a})+k
  3. 1xx2a2dx=1asec1xa+k\int \frac{1}{x\sqrt{x^2-a^2}}dx = \frac{1}{a}sec^{-1}|\frac{x}{a}|+k

Case 1、Case 2

x3+xx1dx\int \frac{x^3+x}{x-1} dx

x3+xx1dx=(x2+x+2+2x1)dx=13x3+12x2+2x+21x1dx=13x3+12x2+2x+2lnx1+k\int \frac{x^3+x}{x-1} dx = \int (x^2+x+2 + \frac{2}{x-1})dx \\= \frac{1}{3}x^3 + \frac{1}{2}x^2+2x+2 \int \frac{1}{x-1}dx \\= \frac{1}{3}x^3 + \frac{1}{2}x^2+2x+2ln|x-1|+k

Case 1、Case 2、Case 3

x32x4(x2x)(x2+4)dx\int \frac{x^3-2x-4}{(x^2-x)(x^2+4)}dx

x32x4(x2x)(x2+4)dx=x32x4x(x1)(x2+4)dx=(Ax+Bx1+Cx+Dx2+4)dx\int \frac{x^3-2x-4}{(x^2-x)(x^2+4)}dx = \int \frac{x^3-2x-4}{x(x-1)(x^2+4)}dx = \int ( \frac{A}{x} + \frac{B}{x-1} + \frac{Cx+D}{x^2+4})dx
x32x4=A(x1)(x2+4)+Bx(x2+4)+(Cx+D)x(x+1)\Rightarrow x^3-2x-4 = A(x-1)(x^2+4)+Bx(x^2+4)+(Cx+D)x(x+1)
Let x=0,1,1,2x = 0,1,-1,2,A=1,B=1,C=1,D=2\Rightarrow A = 1,B=-1,C=1,D=2
(Ax+Bx1+Cx+Dx2+4)dx=(1x+1x1+x+2x2+4)dx=lnxlnx1+12lnx2+4+tan1(x2)+k\int ( \frac{A}{x} + \frac{B}{x-1} + \frac{Cx+D}{x^2+4})dx = \int ( \frac{1}{x} + \frac{-1}{x-1} + \frac{x+2}{x^2+4})dx \\= ln|x|-ln|x-1|+\frac{1}{2}ln|x^2+4| + tan^{-1}(\frac{x}{2})+k

Case 1、Case 2

4x33x+24x24x+3dx\int \frac{4x^3-3x+2}{4x^2-4x+3}dx

4x33x+24x24x+3dx=(x+1+2x14x24x+3)dx\int \frac{4x^3-3x+2}{4x^2-4x+3}dx = \int (x+1 + \frac{-2x-1}{4x^2-4x+3})dx
=12x2+x2x(2x1)2+2dx1(2x1)2+2dx= \frac{1}{2}x^2 + x -2\int \frac{x}{(2x-1)^2+2}dx - \int \frac{1}{(2x-1)^2+2}dx
=12x2+x14ln4x24x+312tan1(2x12)+k= \frac{1}{2}x^2 + x - \frac{1}{4}ln|4x^2-4x+3| - \frac{1}{\sqrt{2}}tan^{-1}(\frac{2x-1}{\sqrt{2}}) +k

Let u=2x1du=2dxu = 2x-1 \Rightarrow du = 2dx

  1. 1(2x1)2+2dx=121u2+22du=122tan1(u2)+k=122tan1(2x12)+k\int \frac{1}{(2x-1)^2+2}dx = \frac{1}{2}\int \frac{1}{u^2+\sqrt{2}^2}du = \frac{1}{2\sqrt{2}} tan^{-1}(\frac{u}{\sqrt{2}})+k = \frac{1}{2\sqrt{2}} tan^{-1}(\frac{2x-1}{\sqrt{2}})+k
  2. x(2x1)2+2dx=12(u+1)u2+212du=14uu2+2du+141u2+2du=18lnu2+2+1412tan1(u2)+k=18ln4x24x+3+142tan1(2x12)+k\int \frac{x}{(2x-1)^2+2}dx = \int \frac{\frac{1}{2}(u+1)}{u^2+2}\frac{1}{2}du = \frac{1}{4} \int \frac{u}{u^2+2}du + \frac{1}{4}\int \frac{1}{u^2+2}du \\= \frac{1}{8}ln|u^2+2| + \frac{1}{4} \cdot \frac{1}{\sqrt{2}}tan^{-1}(\frac{u}{\sqrt{2}})+k = \frac{1}{8}ln|4x^2-4x+3|+\frac{1}{4\sqrt{2}}tan^{-1}(\frac{2x-1}{\sqrt{2}})+k

# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay