• Improper integrals

# Improper Integrals (瑕積分)

  • Case1: 積分範圍 無限,但 積分函數 有限
  • Case2: 積分範圍 有限,但 積分函數 無限
  • Case3: 積分範圍 無限,且 積分函數 無限

# Case 1

  1. If ff is continuous on [a,)[a, \infty),then af(x)dx=limbabf(x)dx\int^{\infty}_a f(x) dx = \lim_{b \to \infty} \int^b_a f(x)dx
  2. If ff is continuous on (,b](-\infty, b],then bf(x)dx=limaabf(x)dx\int^{b}_{-\infty} f(x) dx = \lim_{a \to -\infty} \int^b_a f(x)dx
  3. If ff is continuous on (,)(-\infty, \infty),then f(x)dx=af(x)dx+af(x)dx=limtatf(x)dx+limttaf(x)dx\int^{\infty}_{-\infty} f(x) dx = \int^{a}_{-\infty} f(x) dx + \int^{\infty}_{a} f(x) dx = \lim_{t \to \infty} \int^t_a f(x) dx + \lim_{t \to -\infty} \int^a_t f(x) dx
  1. 01x2+1dx\int^{\infty}_0 \frac{1}{x^2+1}dx
  2. 21xdx\int^{-2}_{-\infty} \frac{1}{x}dx

01x2+1dx=limbab1x2+1dx=limb{tan1xx=0x=b}=limb{tan1btan10}=π20=π2\int^{\infty}_0 \frac{1}{x^2+1}dx = \lim_{b\to \infty} \int^b_a \frac{1}{x^2+1}dx = \lim_{b \to \infty} \{ tan^{-1}x|^{x=b}_{x=0} \} = \lim_{b \to \infty} \{ tan^{-1}b - tan^{-1}0 \} = \frac{\pi}{2} - 0 = \frac{\pi}{2}.

01x2+1dx\Rightarrow \int^{\infty}_0 \frac{1}{x^2+1}dx converge to π2\frac{\pi}{2}.

21xdx=lima1xdx=lima{lnxax=2}=lima{ln2lna}=\int^{-2}_{-\infty} \frac{1}{x} dx = \lim_{a\to -\infty}\frac{1}{x} dx = \lim_{a \to -\infty} \{ ln|x| |^{x = -2}_{a} \} = \lim_{a \to -\infty} \{ ln2 - ln|a| \} = -\infty
21xdx\Rightarrow \int^{-2}_{-\infty} \frac{1}{x} dx diverges.

# Case 2

  1. If ff is continuous on [a,b)[a,b) and limtbf(x)=/\lim_{t \to b^-} f(x) = \infty / -\infty,then abf(x)dx=limtbatf(x)dx\int^b_af(x)dx = \lim_{t \to b^-} \int^t_a f(x)dx.
  2. If ff is continuous on (a,b](a,b] and limta+f(x)=/\lim_{t \to a^+} f(x) = \infty / -\infty,then abf(x)dx=limta+tbf(x)dx\int^b_af(x)dx = \lim_{t \to a^+} \int^b_t f(x)dx.
  3. If ff is continuous on (a,b)(a,b) and both limtbf(x)\lim_{t \to b^-} f(x),limta+f(x)\lim_{t \to a^+} f(x) are infinite,then abf(x)dx=acf(x)dx+cbf(x)dx\int^b_af(x)dx = \int^c_af(x)dx + \int^b_cf(x)dx.
  1. 011x3dx\int^1_0 \frac{1}{\sqrt[3]{x}}dx
  2. 121x3dx\int^2_{-1} \frac{1}{x^3}dx

011x3dx=01x13dx=lima0+a1x13dx=lima0+32x23x=ax=1=lima0+3232a23=32\int^1_0 \frac{1}{\sqrt[3]{x}}dx = \int^1_0 x^{-\frac{1}{3}} dx = \lim_{a \to 0^+} \int^1_a x^{-\frac{1}{3}}dx = \lim_{a \to 0^+} \frac{3}{2} x^{\frac{2}{3}} |^{x=1}_{x=a} = \lim_{a \to 0^+} {\frac{3}{2} - \frac{3}{2}a^{\frac{2}{3}}} = \frac{3}{2}.

011x3dx\Rightarrow \int^1_0 \frac{1}{\sqrt[3]{x}}dx converges to 32\frac{3}{2}.

121x3dx=101x3dx+021x3dx=limb01bx3dx+lima0+a2x3dx=limb012x2x=1x=b+lima0+12x2x=ax=2=limb0(121b2+12)+lima0+(18+121a2)\int^2_{-1} \frac{1}{x^3}dx = \int^0_{-1} \frac{1}{x^3} dx + \int^2_0 \frac{1}{x^3} dx = \lim_{b \to 0^-} \int^b_{-1} x^{-3} dx + \lim_{a \to 0^+} \int^2_a x^{-3}dx = \lim_{b \to 0^-} \frac{-1}{2}x^{-2} |^{x=b}_{x=-1} + \lim_{a \to 0^+} \frac{-1}{2}x^{-2} |^{x=2}_{x=a} = \lim_{b \to 0^-} (-\frac{1}{2} \cdot \frac{1}{b^2} + \frac{1}{2}) + \lim_{a \to 0^+} (-\frac{1}{8} + \frac{1}{2} \cdot \frac{1}{a^2})

121x3dx\Rightarrow \int^2_{-1} \frac{1}{x^3}dx diverges.(121x3dx\int^2_{-1} \frac{1}{x^3}dx does not exist.)

# Case 3

# Example

01x(x+1)dx\int^{\infty}_0 \frac{1}{x(x+1)}dx

solution

01x(x+1)dx=011x(x+1)dx+11x(x+1)dx=lima0+a11x(x+1)dx+limb1b1x(x+1)dx=lima0+lnxx+1a1+limblnxx+11b=lima0+(ln12lnaa+1)+limb(lnbb+1ln12)=lima0+lnaa+1+ln1\int^{\infty}_0 \frac{1}{x(x+1)}dx= \int^1_0\frac{1}{x(x+1)}dx + \int^{\infty}_1 \frac{1}{x(x+1)}dx = \lim_{a \to 0^+}\int^1_a \frac{1}{x(x+1)}dx + \lim_{b \to \infty}\int^b_1 \frac{1}{x(x+1)}dx \\= \lim_{a \to 0^+}ln|\frac{x}{x+1}||^1_a + \lim_{b \to \infty}ln|\frac{x}{x+1}||^b_1 = \lim_{a \to 0^+}(ln\frac{1}{2} - ln|\frac{a}{a+1}|) + \lim_{b \to \infty}(ln|\frac{b}{b+1}| - ln\frac{1}{2}) \\= -\lim_{a \to 0^+}ln|\frac{a}{a+1}| + ln1

01x(x+1)dx\Rightarrow \int^{\infty}_0\frac{1}{x(x+1)}dx diverges.

# Comparative method

若無法計算瑕積分的值,可以看出瑕積分的收斂發散

Disuss the improper integral 11xpdx\int^{\infty}_1 \frac{1}{x^p}dx.

  1. If p1p \neq 1,1b1xpdx=1p+1xp+1x=1x=b=1p+1(1bp11)\int^b_1 \frac{1}{x^p}dx = \frac{1}{-p+1}x^{-p+1}|^{x=b}_{x=1} = \frac{1}{-p+1}(\frac{1}{b^{p-1}}-1).
    1. p>1p>1limb(1bp11)=1\lim_{b \to \infty}(\frac{1}{b^{p-1}}-1) = -1.
    2. p<1p<1limb(1bp11)=\lim_{b \to \infty}(\frac{1}{b^{p-1}}-1) = \infty.
      11xpdx\therefore \int^{\infty}_1 \frac{1}{x^p}dx is convergent if p>1p > 1.
      11xpdx\therefore \int^{\infty}_1 \frac{1}{x^p}dx is divergent if p<1p < 1.
  2. If p=1p =1,then 11xdx=limb1b1xdx=limb(lnbln1)=\int^{\infty}_1 \frac{1}{x}dx = \lim_{b \to \infty}\int^{b}_1 \frac{1}{x}dx = \lim_{b \to \infty}(ln|b| - ln|1|) = \infty
    1b1xdx\Rightarrow \int^{b}_1\frac{1}{x}dx is divergent.
結果很重要
  • 11xpdx\int^{\infty}_1 \frac{1}{x^p}dx is convergent if p>1p > 1.
  • 11xpdx\int^{\infty}_1 \frac{1}{x^p}dx is divergent if p<1p < 1.
  • 11xpdx\int^{\infty}_1 \frac{1}{x^p}dx is divergent if p=1p = 1.
  1. 21x1dx\int^{\infty}_2 \frac{1}{\sqrt{x-1}}dx 收斂 or 發散?
  2. 11x2+3dx\int^{\infty}_1 \frac{1}{\sqrt{x^2+3}}dx 收斂 or 發散?
  3. Show that 1exdx\int^{\infty}_1 e^{-x}dx is convergent.

0<1x<1x1\because 0 < \frac{1}{\sqrt{x}} < \frac{1}{\sqrt{x-1}} on [2,)[2,\infty).
21xdx<21x1dx\therefore \int^{\infty}_2 \frac{1}{\sqrt{x}}dx < \int^{\infty}_2 \frac{1}{\sqrt{x-1}}dx
21x1dx\Rightarrow \int^{\infty}_2 \frac{1}{\sqrt{x-1}}dx diverges since 21xdx\int^{\infty}_2 \frac{1}{\sqrt{x}}dx diverges.

0<1x2+3<1x2\because 0 < \frac{1}{x^2+3} < \frac{1}{x^2} on [1,)[1,\infty).
11x2+3dx11x2dx\therefore \int^{\infty}_1 \frac{1}{x^2+3}dx \le \int^{\infty}_1 \frac{1}{x^2}dx
11x2+3dx\Rightarrow \int^{\infty}_1 \frac{1}{x^2+3}dx converges since 11x2dx\int^{\infty}_1 \frac{1}{x^2}dx converges.

0ex2dx=01ex2dx+1ex2dx\int^{\infty}_0 e^{-x^2} dx =\int^1_0 e^{-x^2} dx + \int^{\infty}_1 e^{-x^2} dx
exex20\because e^{-x} \ge e^{-x^2} \ge 0 on [1,)[1,\infty).
1bex2dx1bexdx=1e1eb\Rightarrow \int^{b}_1 e^{-x^2} dx \le \int^{b}_1 e^{-x} dx = \frac{1}{e} - \frac{1}{e^b}.
limb1bexdx=1e1exdx\because \lim_{b \to \infty} \int^b_1 e^{-x}dx = \frac{1}{e} \therefore \int^{\infty}_1 e^{-x}dx converges.
01ex2dx\because \int^1_0 e^{-x^2}dx is a definite integral and 1exdx\int^{\infty}_1 e^{-x}dx is convergent.
0exdx\therefore \int^{\infty}_0 e^{-x}dx is convergent.


# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay