• Curves Defined by Parametric Equations
  • Calculus with Parametric Curves
  • Polar Coordinates

# Curves Defined by Parametric Equations

# Define

Parmetric equations are equation such that xx and yy are both funtions of
a third variable tt: x=f(t),y=g(t),αtβx = f(t), y = g(t) , \alpha \le t \le \betaEach tt determines a point (x,y)(x,y).
As tt varies, (x,y)=(f(t),g(t))(x,y) = (f(t),g(t)) varies and traces out a curve, which call a parametic curve.

# Formula

Cycloid:{x=r(θsinθ)y=r(1cosθ)θRCycloid: \left\{\begin{matrix} x = r(\theta-sin\theta)\\ y = r(1-cos\theta) \end{matrix}\right. \theta \in \mathbb{R}.

Sketch and identify curve defined by x=t22tx=t^2-2t and y=t+1y=t+1

t=y1x=(y1)22(y1)=y24y+3\because t = y-1 \therefore x = (y-1)^2 - 2(y-1) = y^2-4y+3
x=(y2)21\Rightarrow x = (y-2)^2 - 1 頂點為(1,2)(-1,2)
Let y24y+3=0,y=1or3y^2-4y+3 = 0, y = 1 or 3
t=0,x=0,y=1t = 0, x = 0,y = 1, t=1,x=1,y=2t = 1, x = -1, y=2

# Calculus with Parametric Curves

# Tangent Line

Tangent Line for x=f(t),y=g(t)x=f(t), y = g(t), we need

  1. 切點座標: (x,y)=(f(t),g(t))(x,y) = (f(t),g(t))
  2. 切線斜率: dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} if dxdt0\frac{dx}{dt} \neq 0
    \Rightarrow The tangent line is yg(t)=dydxt=t0(xf(t0))y-g(t) = \frac{dy}{dx} |_{t = t_0} (x-f(t_0))
Remark

dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}

  1. dxdt\frac{dx}{dt}dydt\frac{dy}{dt} 不同時為 0:
    1. dydt=0\frac{dy}{dt} = 0,有水平切線。
    2. dxdt=0\frac{dx}{dt} = 0,有垂直切線。
  2. dxdt\frac{dx}{dt}dydt\frac{dy}{dt} 同時為 0,則什麼都有可能。

Given parametric equation C:x=t3C: x = t^3,y=t33ty = t^3-3t

  1. Show that CC has two tangent lines at (3,0)(3,0) and find their equations.
  2. Find points on CC where tangent is horizontal or vertical.
  3. Discuss the concavity of CC.

先確認 (3,0)(3,0)CC 上,t=±3\Rightarrow t = \pm \sqrt{3}
dydx=dydtdxdt=3t232t=32t32t1\because \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2-3}{2t} = \frac{3}{2}t - \frac{3}{2}t^{-1}.
dydxt=3=3\therefore \frac{dy}{dx} |_{t = \sqrt{3}} = \sqrt{3} and dydxt=3=3\frac{dy}{dx} |_{t = -\sqrt{3}} = -\sqrt{3}
\Rightarrow the tangent lines are y=3(x3)y = \sqrt{3}(x-3) and y=3(x3)y = -\sqrt{3}(x-3)

dydt=03t23=0t=±1\frac{dy}{dt} = 0 \Rightarrow 3t^2 - 3 = 0 \Rightarrow t = \pm 1
水平切線: t=1:(1,2)t = 1 : (1,-2)t=1:(1,2)t = -1 : (1,2)
dxdt=02t=0t=0\frac{dx}{dt} = 0 \Rightarrow 2t = 0 \Rightarrow t = 0
垂直切線: t=0:(0,0)t = 0 : (0,0)

d2ydx2=ddtdxdt=32+32t22t=34(1t+1t3)\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}}{\frac{dx}{dt}} = \frac{\frac{3}{2}+ \frac{3}{2}t^{-2}}{2t}= \frac{3}{4}(\frac{1}{t} + \frac{1}{t^3})

d2ydx2>0\frac{d^2y}{dx^2}>0 if t>0t>0,即 t>0t>0 時凹口向上
d2ydx2<0\frac{d^2y}{dx^2}<0 if t<0t<0,即 t<0t<0 時凹口向下

# Area

Consider x=f(t),y=g(t)x = f(t),y = g(t) and αtβ\alpha \le t \le \beta.
A=abF(x)dx=βαg(t)d(f(t))=βαg(t)f(t)dtA = \int^b_a F(x) dx = \int^{\alpha}_{\beta}g(t)d(f(t)) = \int^{\alpha}_{\beta}g(t)f'(t)dt.

Find the area of an arch of cycloid x=r(θsinθ),y=r(1cosθ)x = r(\theta - sin\theta),y = r(1-cos \theta)

A=02πg(θ)f(θ)dθ=02πr(1cosθ)r(1cosθ)dθ=r202π(1cosθ)2dθ=3πr2A = \int^{2\pi}_0g(\theta)f'(\theta) d\theta = \int^{2\pi}_0 r(1-cos\theta) \cdot r(1-cos\theta)d\theta = r^2 \int^{2\pi}_0 (1-cos\theta)^2 d\theta = 3\pi r^2.

# Arc Length

Consider x=f(t),y=g(t)x = f(t),y=g(t) and αtβ\alpha \le t \le \beta
If ff' and gg' are continuous on [α,β][\alpha,\beta], then L=ab1+(F(x))2dx=αβ1+(dydtdxdt)2dxdtdtL = \int^b_a \sqrt{1+(F'(x))^2}dx = \int^{\beta}_{\alpha}\sqrt{1 + (\frac{\frac{dy}{dt}}{\frac{dx}{dt}})^2} \frac{dx}{dt} \cdot dt
L=αβ(dxdt)2+(dydt)2dt\Rightarrow L = \int^{\beta}_\alpha \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt

Find the arch length of an arch of cycloid x=r(θsinθ),y=r(1cosθ)x = r(\theta - sin\theta),y = r(1-cos \theta)

L=αβ(dxdθ)2+(dydθ)2dθ=02πr2(1cosθ)2+r2sin2θdθ=8rL = \int^{\beta}_\alpha \sqrt{(\frac{dx}{d\theta})^2 + (\frac{dy}{d\theta})^2} d\theta = \int^{2\pi}_0 \sqrt{r^2(1-cos\theta)^2 + r^2sin^2\theta} d\theta = 8r

# Surface Area

Consider C:x=f(t),y=g(t)C:x = f(t),y=g(t) and αtβ\alpha \le t \le \beta 對 x 軸旋轉得到的旋轉體
ff'gg' are continuous on [α,β][\alpha,\beta] and g(t)0g(t) \ge 0 on [α,β][\alpha,\beta]
\Rightarrow the surface area is αβ2πy(dxdt)2+(dydt)2dt\int^{\beta}_{\alpha}2\pi y \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}dt

C:x=rcost,t=rsint,0tπC: x = rcost , t = rsint , 0 \le t \le \pi 繞 x 軸旋轉得到球面,求此球面的表面積。

A=0π2π(rsint)(rsint)2+(rcost)2dt=4πr2A = \int^{\pi}_0 2\pi (rsint)\sqrt{(-rsint)^2 + (rcost)^2}dt = 4\pi r^2

# Polar Coordinates

P[r,θ],r,θRP[r,\theta], r, \theta \in \mathbb{R}.

  1. r=0r = 0: 圖形為一點 (極點)
  2. r>0r > 0: (rcosθ,rsinθ)(rcos\theta,rsin\theta)
  3. r<0r < 0: [r,θ]=[r,θ+π][r,\theta] = [|r|,\theta + \pi]

# Relationship between Polar and Cartesian Coordinates

x=rcosθ,y=rsinθx = rcos\theta, y = rsin\theta, r,θRr,\theta \in \mathbb{R}.
r2=x2+y2\Rightarrow r^2 = x^2+y^2, tanθ=yxtan\theta = \frac{y}{x}.

# Calculus with Parametric Curves

# Tangent Line

  1. 切點: (x,y)=(rcosθ0,rsinθ0)=(f(θ0)cosθ0,f(θ0)sinθ0)(x,y) = (rcos\theta_0, rsin\theta_0) = (f(\theta_0)cos\theta_0, f(\theta_0)sin\theta_0)
  2. 斜率: dydx=dydθdxdθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} if dxdθ0\frac{dx}{d\theta} \neq 0
    Tangent Line is yf(θ0)sinθ0=dydxθ=θ0(xf(θ0)cosθ0)y - f(\theta_0)sin\theta_0 = \frac{dy}{dx}|_{\theta = \theta_0}(x-f(\theta_0)cos\theta_0)

# Area

  1. Area bounded by f(θ)f(\theta)
    Let RR be the region bounded by r=f(θ)r = f(\theta), θ=a\theta = a, θ=b\theta = b, where f(θ)0f(\theta) \ge 0 on [a,b][a,b] and 0<ba2π0 < b-a \le 2\pi.
    Then the area AA of RR is A=ab12((f(θ))2)dθA = \int^b_a \frac{1}{2} ((f(\theta))^2)d\theta(or A=ab12r2dθA = \int^b_a \frac{1}{2}r^2 d\theta)

  2. Area bounded by f(θ)f(\theta) and g(θ)g(\theta)
    f(θ),g(θ)0f(\theta),g(\theta) \ge 0 on [a,b][a,b] and 0<ba2π0 < b-a \le 2\pi
    A=12ab((f(θ))2)dθ12ab((g(θ))2)dθ=12ab((f(θ))2(g(θ))2)dθ\Rightarrow A = \frac{1}{2} \int^b_a ((f(\theta))^2)d\theta - \frac{1}{2} \int^b_a ((g(\theta))^2)d\theta =\frac{1}{2} \int^b_a ((f(\theta))^2 - (g(\theta))^2)d\theta

# Arc Length

The arc length of L=ab(dxdθ)2+(dydθ)2dθ=abr2+(drdθ)2dθL = \int^b_a \sqrt{(\frac{dx}{d\theta})^2 + (\frac{dy}{d\theta})^2} d\theta = \int^b_a \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta


# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay