• Limits of the Sequence
  • The Limits of Function
  • Evaluating Limits Analytically

# Limits of the Sequence

We hope to find limnan=?\lim_{n \to \infty}a_n = ?

# Define

{an},anR,n=N,LR\{a_n\},a_n \in \mathbb{R},n = N,L\in \mathbb{R}
ϵ>0,N0N\forall \epsilon > 0 ,\exist N_0 \in \mathbb{N} s.t.anL<ϵ|a_n-L|<\epsilon if n>N0n > N_0
則稱數列{an}\{a_n\} 收斂於LL,記作limnan=L\lim_{n \to \infty} a_n = LanL(n)a_n \rightarrow L(n \rightarrow \infty)

# Define

limnan=L\lim_{n \to \infty} a_n = L,則稱數列{an}\{a_n\} 為收斂 convergent ,反之則為發散 divergent

# Example

find the limit of the sequences:
Ex1.{(1)n}\{ (-1)^n \}, Ex2.{sinn}\{ sin \; n \}, Ex3.{2n+5}\{ 2n+5 \}

limn(1)n\lim_{n \to \infty}(-1)^n does not exist (震盪)
{(1)n}\Rightarrow \{ (-1)^n \}is divergent.

limnsinn\lim_{n \to \infty}sin\; n does not exist
{sinn}\Rightarrow \{ sin \; n \}is divergent.

limn2n+5=\lim_{n \to \infty}2n+5 = \infty.The limit does not exist
{2n+5}\Rightarrow \{ 2n+5 \}is divergent.

# The Limits of Functions

# 直觀的角度

  1. f(x)f(x) is defined,limxaf(x)=L(=f(a)),\; \lim_{x\to a}f(x) = L ( = f(a))
  2. f(x)f(x) is not defined but limxaf(x)=L\; \lim_{x\to a}f(x) = L
  3. f(x)f(x) is defined but f(a)L,limxaf(x)=L\; f(a) \neq L , \; \lim_{x\to a}f(x) = L
  1. 左右趨近值不相同
  2. Infinite limits
  3. 震盪行為

H(x)={1ifx>01ifx0H(x) = \begin{cases} 1 & \text{ if } x > 0 \\ -1 & \text{ if } x \le 0 \end{cases}
limx0H(x)\lim_{x \to 0}H(x) does not exist

G(x)=1x2G(x) = \frac{1}{x^2}
limx0G(x)=\lim_{x \to 0}G(x) = \infty does not exist

F(x)=sin(1x)F(x) = sin(\frac{1}{x})
limx0F(x)\lim_{x \to 0}F(x) does not exist

# 數列觀點下的函數極限

# Define

ARA \in \mathbb{R}AA 的導集為{a{an}A{a}s.t.limnan=a}\{ a | \exists \{ a_n \} \in A \setminus \{a \} \; s.t. \; \lim_{n \to \infty} a_n = a \}
AA 的導集以AA' 表示

# Define

ARf:ARA \in \mathbb{R} \; f: A \rightarrow \mathbb{R} is a function

若所有取值在 A{a}A \setminus \{ a \} 中並收斂到aa 的數列{a}n=1\{ a \} ^\infty_{n=1},{f(an)}n=1\{f(a_n)\}^\infty_{n=1} 也會收斂到同一個值
則我們說當xx 趨近於aa 時,f(x)f(x) 的極限存在。

# Proposition

若 f (x) 的極限存在,則極限必唯一。換句話說,
LR\exists L \in \mathbb{R} 滿足對取值於A{a}A \setminus \{ a \} 並收斂到aa 的數列{an}\{ a_n \}
都有limn=L\lim_{n \to \infty}=L,我們稱「當xx 趨近於aa 時,f(x)f(x) 的極限為LL

# Example

Find the limit of limx0f(x)\lim_{x \to 0}f(x) ,where f(x)={sin(1x)ifx00ifx=0f(x) = \begin{cases} sin(\frac{1}{x}) & \text{ if } x \neq 0 \\ 0 & \text{ if } x = 0 \end{cases}

{xn}={12nπ}R{0}(limn12nπ=0){yn}={12nπ+π2}R{0}(limn12nπ+π2=0)\begin{matrix} \{x_n\} &= \{ \frac{1}{2n\pi} \} \in \mathbb{R}\setminus \{0\} & (\lim_{n \to \infty} \frac{1}{2n\pi} = 0) \\ \{y_n\} &= \{ \frac{1}{2n\pi+\frac{\pi}{2}} \} \in \mathbb{R}\setminus \{0\} & (\lim_{n \to \infty} \frac{1}{2n\pi+\frac{\pi}{2}} = 0) \end{matrix}

But limnf(xn)=limnsin(2nπ)=0limnf(yn)=limnsin(2nπ+π2=1\begin{matrix} \lim_{n\to \infty}f(x_n) =& \lim_{n\to \infty}sin(2n\pi)&=0 \\ \lim_{n\to \infty}f(y_n) =& \lim_{n\to \infty}sin(2n\pi+\frac{\pi}{2}&=1 \end{matrix}
limx0f(x)\Rightarrow \lim_{x \to 0}f(x) does not exist (01)(0 \neq 1)

# 數學語言

# define

limxaf(x)=Lϵ>0,δ>0s.t.f(x)L<ϵwhenever0<xa<δ\lim_{x\to a}f(x) =L \leftrightarrow \forall \epsilon >0, \exists \delta>0 \; s.t. \;|f(x)-L|<\epsilon \; whenever \; 0<|x-a|< \delta

# Evaluating Limits Analytically

# Limit Laws

Suppose that c is a constant and limxaf(x),limxaf(x)\lim_{x\to a}f(x), \lim_{x\to a}f(x) exist. Then

  1. limxa(f(x)±g(x))=limxaf(x)±limxag(x)\lim_{x\to a}(f(x) \pm g(x)) = \lim_{x\to a}f(x) \pm \lim_{x\to a}g(x)
  2. limxacf(x)=climxaf(x)\lim_{x\to a}cf(x) = c \lim_{x\to a}f(x)
  3. limxa(f(x)g(x))=limxaf(x)×limxag(x)\lim_{x\to a}(f(x)g(x)) = \lim_{x\to a}f(x) \times \lim_{x\to a}g(x)
  4. limxaf(x)g(x)=limxaf(x)limxag(x)iflimxag(x)0\lim_{x\to a}\frac{f(x)}{g(x)} = \frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}\; if \; \lim_{x\to a}g(x) \neq 0
  5. limxac=c\lim_{x \to a}c = c
  6. limxax=a\lim_{x \to a}x = a
  7. limxa(f(x))n=(limxaf(x))n,nN\lim_{x \to a}(f(x))^n = (\lim_{x \to a}f(x))^n ,\; n \in \mathbb{N}(from 3.)
  8. limxa(xn)=(limxax)n=an,nN\lim_{x \to a}(x^n) = (\lim_{x \to a}x)^n = a^n, \; n \in \mathbb{N} (from 6. 7.)
  9. p(x)=anxn+an1xn1+...+a0p(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_0 is a polynomial function (多項式函數),
    limxap(x)=p(a)\lim_{x \to a}p(x) = p(a)
  10. r(x)=p(x)q(x)r(x) = \frac{p(x)}{q(x)} is a rational function (有理函數).
    This means p(x)p(x) and q(x)q(x) are polynomial functions and
    cRs.t.g(c)0c \in \mathbb{R} \; s.t. \; g(c) \neq 0 then limxcr(x)=limxcp(x)limxcq(x)=p(c)q(c)\lim_{x \to c}r(x) = \frac{\lim_{x \to c}p(x)}{\lim_{x \to c}q(x)} = \frac{p(c)}{q(c)}
Remark

f(x)=x2sin(1x)f(x) = x^2sin(\frac{1}{x}),find limx0f(x)\lim_{x \to 0}f(x)
limx0x2sin(1x)limx0x2×limx0sin(1x)\lim_{x \to 0}x^2sin(\frac{1}{x}) \neq \lim_{x \to 0}x^2 \times \lim_{x \to 0}sin(\frac{1}{x})
Because limx0sin(1x)\lim_{x \to 0}sin(\frac{1}{x}) does not exist

# Thm

運用 左右極限 來判斷 極限是否存在
limxaf(x)=Llimxa+f(x)=limxaf(x)=L\lim_{x \to a}f(x)=L \Leftrightarrow \lim_{x \to a^+}f(x) = \lim_{x \to a^-}f(x) = L

Prove that limx0xx\lim_{x\to 0 }\frac{|x|}{x} does not exist

x={xifx0xifx<0xx={1ifx01ifx<0|x| = \begin{cases} x &\text{ if } x \ge 0 \\ -x &\text{ if } x < 0 \end{cases} \; \Rightarrow \frac{|x|}{x} = \begin{cases} 1 &\text{ if } x \ge 0 \\ -1 &\text{ if } x < 0 \end{cases}
limx0+xx=1\because \lim_{x \to 0^+} \frac{|x|}{x}=1 and limx0xx=1\lim_{x \to 0^-} \frac{|x|}{x}=-1
limx0xx\therefore \lim_{x \to 0} \frac{|x|}{x} does not exist

f(x)={x3ifx362xifx<3f(x) = \begin{cases} \sqrt{x-3} &\text{ if } x \ge 3 \\ 6-2x &\text{ if } x < 3 \end{cases}
Find limx3f(x)\lim_{x\to 3}f(x)

limx3+f(x)=limx3+x3=0\lim_{x \to 3^+}f(x) = \lim_{x \to 3^+}\sqrt{x-3} = 0
limx3f(x)=limx362x=0\lim_{x \to 3^-}f(x) = \lim_{x \to 3^-}6-2x = 0
limx3f(x)=0\Rightarrow \lim_{x\to 3}f(x) = 0

# Thm

If limxaf(x)=0\lim_{x\to a}|f(x)| = 0 then limxaf(x)=0\lim_{x\to a}f(x) = 0

Remark

If L0L \neq 0 and limxaf(x)=L\lim_{x\to a}|f(x)| = L then this Thm fails.

# Thm

If ff and gg are two function such that limxag(x)=L\lim_{x\to a}g(x) = L and limxLf(L)\lim_{x\to L}f(L),
then limxa(fg)(x)=limxaf(g(x))=f(L)\lim_{x\to a}(f \circ g)(x)= \lim_{x\to a}f(g(x)) = f(L)

Example

Let f(x)=sinx,g(x)=x2f(x) = sin x , g(x) = x^2

  1. (fg)(x)=f(g(x))=sinx2(f \circ g)(x) = f(g(x)) = sin x^2
  2. (gf)(x)=g(f(x))=sin2x(g \circ f)(x) = g(f(x)) = sin^2 x
Remark

sin1x1sinxf(x)=sin1xsin^{-1} x \neq \frac{1}{sin x} \Rightarrow f(x) = sin^{-1}x is the inverse function of f(x)=sinxf(x) = sin x

# Thm

If ff and gg are two functions defined on II and aIa \in I(except possibly at aa)
and f(x)g(x)f(x) \le g(x) on I{a},limxaf(x),limxag(x)I \setminus \{a\},\; \lim_{x\to a}f(x),\; \lim_{x\to a}g(x) exist
then limxaf(x)limxag(x)\lim_{x\to a}f(x)\le \lim_{x\to a}g(x)

# The Squeeze Thm

If f(x)h(x)g(x)f(x) \le h(x) \le g(x) is near a (except possibly at aa)
and limxaf(x)=L=limxag(x)\lim_{x\to a}f(x) = L = \lim_{x\to a}g(x) then limxah(x)=L\lim_{x\to a}h(x) = L

f(x)={x2sin1xifx00ifx=0f(x) = \begin{cases} x^2sin\frac{1}{x} &\text{ if } x \neq 0 \\ 0 &\text{ if } x = 0 \end{cases}
Find limx0f(x)\lim_{x\to 0}f(x)

1sin1x1xR{0}\because -1\le sin\frac{1}{x} \le 1 \; \forall x \in \mathbb{R} \setminus \{ 0 \}
x2x2sin1xx2xR{0}\Rightarrow -x^2 \le x^2sin\frac{1}{x} \le x^2 \; \forall x \in \mathbb{R} \setminus \{ 0 \}
limx0(x2)=0=limx0x2limx0x2sin1x=0\because \lim_{x\to 0}(-x^2) = 0 = \lim_{x\to 0}x^2 \; \therefore \; \lim_{x\to 0}x^2sin\frac{1}{x} = 0(by the Squeeze Thm)

Prove that limx0sinxx=1\lim_{x \to 0}\frac{sin x}{x} = 1

If 0<x<π20<x<\frac{\pi}{2}then sinθ<θ<tanθsin \theta < \theta < tan \theta , we have

  1. By sinθ<θsinθθ<1sin \theta < \theta \Rightarrow \frac{sin \theta}{\theta} < 1
  2. By θ<tanθ=sinθcosθcosθ<sinθθ\theta < tan\theta = \frac{sin \theta}{cos \theta} \Rightarrow cos\theta < \frac{sin\theta}{\theta}

由 1. 2. cosθ<sinθθ<1\Rightarrow cos\theta < \frac{sin\theta}{\theta}<1
limx0+cosx=1=limx0+1\because \lim_{x\to 0^+}cosx = 1 = \lim_{x\to 0^+} 1
\therefore By the Squeeze Thm. limx0+sinxx=1\lim_{x\to 0^+}\frac{sin x}{x} = 1

If π2<x<0\frac{-\pi}{2}<x<0 let y=x>0y = -x > 0
0<y<π2limy0+sinyy=1\Rightarrow 0 < y < \frac{\pi}{2} \Rightarrow \lim_{y\to 0^+}\frac{sin y}{y} = 1
y0+x0+x0\because y \rightarrow 0^+\Rightarrow -x \rightarrow 0^+ \Rightarrow x \rightarrow 0^-

limy0+sinyy=limx0sin(x)x=limx0sinxx=limx0sinxx=1\therefore \lim_{y\to 0^+}\frac{sin y}{y} = \lim_{x\to 0^-}\frac{sin (-x)}{-x} = \lim_{x\to 0^-}\frac{-sin x}{-x} = \lim_{x\to 0^-}\frac{sin x}{x} = 1

limx0sinxx=1\Rightarrow \lim_{x\to 0}\frac{sin x}{x} = 1

  1. limx01cosxx\lim_{x\to 0}\frac{1-cosx}{x}
  2. limx0tanxx\lim_{x\to 0}\frac{tanx}{x}
  3. limx0sin(ax)x,aR\lim_{x\to 0}\frac{sin(ax)}{x}, a\in \mathbb{R}
  4. limx0sinx2x\lim_{x\to 0}\frac{sinx^2}{x}
  5. limx0xsinx1cosx\lim_{x\to 0}\frac{xsinx}{1-cosx}

limx0(1cosxx1+cosx1+cosx)=limx01cos2xx(1+cosx)=limx0(sinxx)(sinx1+cosx)=10=0\lim_{x\to 0}\left ( \frac{1-cosx}{x}\cdot \frac{1+cosx}{1+cosx} \right ) = \lim_{x\to 0}\frac{1-cos^2x}{x(1+cosx)} = \lim_{x\to 0}\left ( \frac{sin x}{x} \right )\left ( \frac{sin x}{1+cosx} \right ) = 1 \cdot 0 = 0

limx0tanxx=limx0(sinxx1cosx)=11=1\lim_{x\to 0}\frac{tan x}{x} = \lim_{x\to 0}\left ( \frac{sin x}{x} \cdot \frac{1}{cosx} \right ) = 1 \cdot 1 = 1

limx0sinaxx=limx0(sinaxaxa)=1a=a\lim_{x\to 0}\frac{sin ax}{x} = \lim_{x\to 0}\left ( \frac{sin ax}{ax} \cdot a \right ) = 1 \cdot a = a

limx0sin2xx=limx0(sin2xx2x)=10=0\lim_{x\to 0}\frac{sin^2 x}{x} = \lim_{x\to 0}\left ( \frac{sin^2 x}{x^2} \cdot x \right ) = 1 \cdot 0 = 0

limx0(xsinx1cosx1+cosx1+cosx)=limx0xsinx(1+cosx)sin2x=limx0x(1+cosx)sinx\lim_{x\to 0}\left ( \frac{xsinx}{1-cosx} \cdot \frac{1+cosx}{1+cosx} \right ) = \lim_{x\to 0}\frac{xsinx(1+cosx)}{sin^2x} = \lim_{x\to 0}\frac{x(1+cosx)}{sinx}
=limx0(xsinx(1+cosx))=12=2= \lim_{x\to 0}\left ( \frac{x}{sinx} \cdot (1+cosx) \right ) = 1 \cdot 2 = 2


# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay