• The Substitution Rule
  • Integration By Parts
  • Trigonometric Integrals

# The Substitution Rule

  1. (1+x)5dx\int (1+x)^5dx
  2. x2(1+x3)5dx\int x^2(1+x^3)^5dx
  3. 2x1+x2dx\int 2x \sqrt{1+x^2} \; dx
  4. 1+2xdx\int \sqrt{1+2x} \; dx

方法一:
Let u=1+xu = 1+x, dudx=ddx(1+x)dudx=1du=dx\frac{du}{dx} = \frac{d}{dx}(1+x) \Rightarrow \frac{du}{dx} = 1 \Rightarrow du = dx
(1+x)5dx=u5du=16u6+k=16(1+x)6+k\int (1+x)^5dx = \int u^5du = \frac{1}{6}u^6+k = \frac{1}{6}(1+x)^6+k
方法二 (直接寫就好):
(1+x)5dx=(1+x)5d(1+x)=16(1+x)6+k\int (1+x)^5 \; dx = \int (1+x)^5 \; d(1+x) = \frac{1}{6}(1+x)^6+k

方法一:
Let u=1+x3u = 1+x^3, dudx=ddx(1+x3)dudx=3x2du=3x2dx\frac{du}{dx} = \frac{d}{dx}(1+x^3) \Rightarrow \frac{du}{dx} = 3x^2 \Rightarrow du = 3x^2dx
(1+x3)5x2dx=13u5du=118u6+k=118(1+x)6+k\int (1+x^3)^5x^2dx = \int \frac{1}{3} u^5du = \frac{1}{18}u^6+k = \frac{1}{18}(1+x)^6+k
方法二 (直接寫就好):
(1+x3)5x2dx=13(1+x3)5d(1+x3)=118(1+x)6+k\int (1+x^3)^5x^2dx = \int \frac{1}{3}(1+x^3)^5 \; d(1+x^3) = \frac{1}{18}(1+x)^6+k

2x1+x2dx=(1+x2)12d(1+x2)=23(1+x2)32+k\int 2x \sqrt{1+x^2} \; dx = \int (1+x^2)^{\frac{1}{2}}d(1+x^2) = \frac{2}{3}(1+x^2)^{\frac{3}{2}}+k

1+2xdx=(1+2x)1212d(1+2x)=13(1+2x)32+k\int \sqrt{1+2x} \; dx = \int (1+2x)^{\frac{1}{2}}\frac{1}{2}d(1+2x) = \frac{1}{3}(1+2x)^{\frac{3}{2}}+k

Remark
  1. Let u=f(x),dudx=f(x)du=f(x)dxu = f(x), \frac{du}{dx} = f'(x) \Rightarrow du = f'(x)dx
  2. d(f(x)+k)=d(f(x))=f(x)dxd(f(x)+k) = d(f(x)) = f'(x)dx
  1. 2xdx\int 2^x \; dx
  2. esinxcosxdx\int e^{sinx}cosx \; dx

2x=eln2x=exln2.2^x = e^{ln2^{x}} = e^{xln2}.
Let u=xln2du=ln2dxu = xln2 \Rightarrow du = ln2dx
2xdx=exln2dx=1ln2eudu=1ln2eu+k=1ln2exln2+k=1ln22x+k\int 2^x \; dx = \int e^{xln2}dx = \frac{1}{ln2}\int e^u du = \frac{1}{ln2}e^u+k=\frac{1}{ln2}e^{xln2}+k = \frac{1}{ln2}2^x+k

esinxcosxdx=esinxd(sinx)=esinx+k\int e^{sinx}cosx \; dx = \int e^{sinx}d(sinx) = e^{sinx}+k

x51+x2dx\int x^5\sqrt{1+x^2} dx

Let u=1+x2u=1+x^2, du=2xdxdu=2xdx and x2=u1x^2=u-1
x51+x2dx=u12x4(12du)=12u12(u1)2du=12(u522u32+u12)du=12(27u7245u52+23u32)+k=17(1+x)7252(1+x2)25+13(1+x2)32+k\int x^5\sqrt{1+x^2} dx = \int u^{\frac{1}{2}}x^4(\frac{1}{2}du)=\frac{1}{2}u^{\frac{1}{2}}(u-1)^2du = \frac{1}{2}\int (u^{\frac{5}{2}}-2u^{\frac{3}{2}}+u^{\frac{1}{2}})du = \frac{1}{2}(\frac{2}{7}u^{\frac{7}{2}}-\frac{4}{5}u^{\frac{5}{2}}+\frac{2}{3}u^{\frac{3}{2}})+k = \frac{1}{7}(1+x)^{\frac{7}{2}}-\frac{5}{2}(1+x^2)^{\frac{2}{5}}+\frac{1}{3}(1+x^2)^{\frac{3}{2}}+k

# Integration By Parts

ddx{f(x)g(x)}=f(x)g(x)+f(x)g(x)f(x)g(x)=f(x)g(x)dx+f(x)g(x)dxf(x)g(x)dx=f(x)g(x)f(x)g(x)dx\frac{d}{dx}\{f(x)g(x) \} = f'(x)g(x)+f(x)g'(x) \\ \Rightarrow f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx \\ \Rightarrow \int f(x)g'(x)dx = f(x)g(x)-\int f'(x)g(x)dx

可以簡寫成: udv=uvvdu\int u dv = uv- \int v du

  1. xsinxdx\int xsinxdx
  2. x2sinxdx\int x^2sinxdx

Let f(x)=x,g(x)=sinxf(x)=1g(x)=cosxxsinxdx=xcosx+cosxdx=xcosx+sinx+kf(x) = x, \; g'(x) = sinx \\ \Rightarrow f'(x) = 1 \; g(x) = -cosx \\ \int xsinxdx = -xcosx+\int cosxdx = -xcosx + sinx + k

Let f(x)=x2,g(x)=sinxf(x) = x^2, \; g'(x) = sinx
f(x)=2xg(x)=cosx\Rightarrow f'(x) = 2x \; g(x) = -cosx
x2sinxdx=x2cosx+2xcosxdx=x2cosx+2(xsinxsinxdx)=x2cosx+2xsinx+2cosx+k\int x^2sinxdx = -x^2cosx+2\int xcosx dx = -x^2cosx+2(xsinx-\int sinx dx) = -x^2cosx +2xsinx+2cosx+k

  1. lnxdx\int lnx \, dx
  2. x2lnxdx\int x^2lnx \, dx

Let f(x)=lnx,g(x)=1f(x) = lnx, \; g'(x)=1
f(x)=1x,g(x)=x\Rightarrow f'(x) = \frac{1}{x}, \; g(x) = x
lnxdx=xlnx1xxdx=xlnxx+k\int lnx \, dx = xlnx - \int \frac{1}{x} \cdot x dx= xlnx - x +k

Let f(x)=lnx,g(x)=x2f(x) = lnx, \; g'(x)=x^2
f(x)=1x,g(x)=13x3\Rightarrow f'(x) = \frac{1}{x}, \; g(x) = \frac{1}{3}x^3
lnxdx=xlnx13x2dx=xlnx19x3+k\int lnx \, dx = xlnx - \int \frac{1}{3}x^2 dx= xlnx - \frac{1}{9}x^3 +k

  1. tan1xdx\int tan^{-1}xdx
  2. sin1xdx\int sin^{-1}xdx

Let f(x)=tan1x,g(x)=1f(x) = tan^{-1}x, \; g'(x) = 1
f(x)=11+x2,g(x)=x\Rightarrow f'(x) = \frac{1}{1+x^2}, \; g(x) = x
tan1xdx=xtan1xx1+x2dx=xtan1x1211+x2d(1+x2)=xtan1x12ln(1+x2)+k\int tan^{-1}xdx = xtan^{-1}x - \int \frac{x}{1+x^2}dx = xtan^{-1}x - \frac{1}{2}\int \frac{1}{1+x^2}d(1+x^2) = xtan^{-1}x - \frac{1}{2}ln(1+x^2)+k

Let f(x)=sin1xdxg(x)=1f(x) = sin^{-1}x dx \; g'(x) = 1
f(x)=11x2g(x)=x\Rightarrow f'(x) = \frac{1}{\sqrt{1-x^2}} \; g(x) = x
sin1xdx=xsin1xx1x2dx=xsin1x+1211x2d(1x2)=xsin1x+1x2+k\int sin^{-1}x dx = xsin^{-1}x - \int \frac{x}{\sqrt{1-x^2}}dx = xsin^{-1}x + \frac{1}{2}\int \frac{1}{\sqrt{1-x^2}}d(1-x^2) = xsin^{-1}x + \sqrt{1-x^2}+k

Remark

一般而言,為了方便計算:

  1. xn(sinxcosxex/ex)dx\int x^n\begin{pmatrix} sinx \\ cosx \\ e^x / e^{-x} \end{pmatrix}dx Let f(x)=xn,g(x)=()f(x) = x^n,g'(x)=()
  2. xn(lnxsin1xtan1x)dx\int x^n\begin{pmatrix} lnx \\ sin^{-1}x \\ tan^{-1}x \end{pmatrix}dx Let f(x)=(),g(x)=xnf(x) = (),g'(x)=x^n

# Trigonometric Functions

  • sin2x+cos2x=1sin^2x+cos^2x=1
  • tan2x+1=sec2xtan^2x + 1 = sec^2x
  • cos2x=2cos2x1=12sin2xcos2x = 2cos^2x-1 = 1-2sin^2x
    cos2x=1+cos2x2.\Rightarrow cos^2x = \frac{1+cos2x}{2}.
    sin2x=1cos2x2.\Rightarrow sin^2x = \frac{1-cos2x}{2}.
  • sinxcosx=12sin2xsinxcosx = \frac{1}{2}sin2x

# ∫sinⁿx dx

sin2xdx=12(1cos(2x))dx=12(1dxcos(2x)dx)=12(x12sin(2x))+k=12x14sin(2x)+k\int sin^2x dx = \frac{1}{2} \int (1-cos(2x)) dx = \frac{1}{2} (\int 1 dx - \int cos(2x) dx ) = \frac{1}{2} ( x- \frac{1}{2} sin(2x))+k = \frac{1}{2}x - \frac{1}{4}sin(2x)+k

sin3xdx=sin2xsinxdx=(1cos2x)d(cosx)=cosx+13cos3x+k\int sin^3x dx = \int sin^2x \cdot sinxdx = -\int (1-cos^2x)d(cosx) = -cosx + \frac{1}{3}cos^3x + k

sin4xdx=(1cos(2x)2)2dx=14(12cos(2x)+cos2(2x))dx=14(xsin(2x))+1+cos(4x)8dx=38x14sin(2x)+132sin(4x)+k\int sin^4x dx = \int (\frac{1-cos(2x)}{2})^2dx = \frac{1}{4} \int (1-2cos(2x)+cos^2(2x))dx = \frac{1}{4}(x - sin(2x))+ \int \frac{1+cos(4x)}{8} dx = \frac{3}{8}x - \frac{1}{4}sin(2x) + \frac{1}{32}sin(4x)+k

# ∫tanⁿx dx

tanxdx=sinxcosxdx=1cosxd(cosx)=lncosx+k\int tanx dx = \int \frac{sinx}{cosx} dx = - \int \frac{1}{cosx} d(cosx) = -ln|cosx| + k

tan2xdx=(sec2x1)dx=tanxx+k\int tan^2x dx = \int (sec^2x - 1) dx = tanx -x + k

tan3xdx=tan2xtanxdx=sec2xtanxdxtanxdx=secxd(secx)tanxdx=12sec2x+lncosx+k\int tan^3x dx = \int tan^2x \cdot tanx dx = \int sec^2xtanx \; dx - \int tanx \; dx = \int secx \; d(secx) - \int tanx dx = \frac{1}{2} sec^2x + ln|cosx| + k

tan4xdx=tan2xtan2xdx=sec2xtan2xdxtan2xdx=tan2xd(tanx)tanx2dx=13tan3x(tanxx+k)=13tan3xtanx+x+k\int tan^4x dx = \int tan^2x \cdot tan^2x dx = \int sec^2xtan^2x \; dx - \int tan^2x \; dx = \int tan^2x \; d(tanx) - \int tanx^2 dx = \frac{1}{3}tan^3x -(tanx -x + k) = \frac{1}{3}tan^3x -tanx +x + k

# ∫secⁿx dx

secxdx=secxsecx+tanxsecx+tanxdx=sec2x+tanxsecxsecx+tanxdx=1secx+tanxd(tanx+secx)=lnsecx+tanx+k\int secx dx = \int secx \cdot \frac{secx + tanx}{secx + tanx}dx = \int \frac{sec^2x+tanxsecx}{secx+tanx}dx = \int \frac{1}{secx+tanx}d(tanx+secx) = ln|secx+tanx|+k

sec2dx=tanx+k\int sec^2 dx = tanx+k

sec3xdx=sec2xsecxdx\int sec^3x \; dx = \int sec^2x \cdot secx \; dx
Let g(x)=sec2x,f(x)=secxg'(x) = sec^2x, f(x) = secx
g(x)=tanx,f(x)=tanxsecx\Rightarrow g(x) = tanx, f'(x) = tanxsecx

sec2xsecxdx=secxtanxtanxtanxsecxdx=secxtanxtan2xsecxdx=secxtanx(sec2x1)2secxdx=secxtanxsecx3dx+secxdx\int sec^2x \cdot secx \; dx = secxtanx - \int tanx \cdot tanxsecx \; dx = secxtanx - \int tan^2xsecx \; dx = secxtanx - \int (sec^2x-1)^2secx \; dx = secxtanx - \int secx^3 \; dx + \int secx \; dx
2sec3xdx=secxtanx+secxdx\Rightarrow 2\int sec^3x \; dx = secxtanx + \int secx \; dx
sec3xdx=12secxtanx+12lnsecx+tanx+k\Rightarrow \int sec^3x \; dx = \frac{1}{2}secxtanx + \frac{1}{2}ln|secx+tanx| + k

sec4xdx=sec2xsec2xdx=(tan2x+1)d(tanx)=13tan3x+tanx+k\int sec^4x \; dx = \int sec^2x \cdot sec^2x \; dx = \int (tan^2x+1) \; d(tanx) = \frac{1}{3}tan^3x + tanx + k

# sinnxcosmx / tannxsecmx

sin5xcos2xdx=sin4xcos2xd(cosx)=(1cos2x)2cos2xd(cosx)=cos2x2cos4x+cos6dx=13cos3x+25cos5x17cos7x+k\int sin^5xcos^2x \; dx = \int sin^4xcos^2x \; d(-cosx) = -\int (1-cos^2x)^2cos^2x \; d(cosx) = - \int cos^2x - 2cos^4x + cos^6 \; dx = -\frac{1}{3}cos^3x + \frac{2}{5}cos^5x - \frac{1}{7}cos^7x +k

tan6xsec4xdx=tan6xsec2xd(tanx)=tan6x(tan2x+1)d(tanx)=tan8x+tan6xd(tanx)=19tan9x+17tan7x+k\int tan^6xsec^4x \; dx = \int tan^6xsec^2x \; d(tanx) = \int tan^6x(tan^2x+1) \; d(tanx) = \int tan^8x + tan^6x \; d(tanx) = \frac{1}{9}tan^9x+\frac{1}{7}tan^7x +k

tan5xsec7xdx=tan4xsec6xtanxsecxdx=(sec2x1)2sec6xd(secx)=sec10x2sec8x+sec6xd(secx)=111sec11x29sec9+17sec7x+k\int tan^5xsec^7x \; dx = \int tan^4x sec^6x \cdot tanxsecx \; dx = \int (sec^2x-1)^2sec^6x \; d(secx) = \int sec^{10}x-2sec^8x +sec^6x \; d(secx) = \frac{1}{11}sec^{11}x-\frac{2}{9}sec^9 + \frac{1}{7} sec^7x+k

cos3xsinxdx=cos3x(sinx)12dx=cos2x(sinx)12d(sinx)=(1sin2x)2(sinx)12dx=(sinx)12(sinx)32d(sinx)=2(sinx)1225(sinx)52+k\int \frac{cos^3x}{\sqrt{sinx}} dx = \int cos^3x(sinx)^{-\frac{1}{2}} dx = \int cos^2x(sinx)^{-\frac{1}{2}}d(sinx) = \int (1-sin^2x)^2(sinx)^{-\frac{1}{2}}dx= \int (sinx)^{-\frac{1}{2}}-(sinx)^{\frac{3}{2}}d(sinx) = 2(sinx)^{\frac{1}{2}} - \frac{2}{5}(sinx)^{\frac{5}{2}} +k


# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay