• Limits at infinity; Asymptotes
  • What is the number e?
  • Differentiation

# Limits at infinity; Asymptotes

# Define

If the distance between the graph of a function and some fixed straight line approaches zero as a point on the graph moves increasingly for from the origin, we say that the graph approaches the line asymptotically and that the line is a asymptote (漸進線) of the graph

  1. f(x)=tanxf(x) = tan x
  2. f(x)=log2xf(x) = log_2x

limxnπ+π2tanx=,limxnπ+π2+tanx=\because \lim_{x\to n\pi + \frac{\pi}{2}^-} tanx= \infty, \lim_{x\to n\pi + \frac{\pi}{2}^+} tanx= -\infty
f(x)=tanxf(x) = tanx has vertical asymptotes x=nπ+π2nZx = n\pi + \frac{\pi}{2} \forall n \in \mathbb{Z}

limx0+log2x=\because \lim_{x\to 0^+}log_2x = -\infty
f(x)=log2xf(x) = log_2x has vertical asymptote x=0x = 0

Find limx(3x2x25x2+4x+1)\lim_{x\to \infty} \left ( \frac{3x^2-x-2}{5x^2+4x+1} \right )

limx(3x2x25x2+4x+11x21x2)=limx(31x2x25+4x+1x2)=35\lim_{x\to \infty} \left ( \frac{3x^2-x-2}{5x^2+4x+1} \cdot \frac{\frac{1}{x^2} }{\frac{1}{x^2}} \right )= \lim_{x\to \infty} \left ( \frac{3-\frac{1}{x}-\frac{2}{x^2} }{5+\frac{4}{x} +\frac{1}{x^2} } \right ) = \frac{3}{5}
y=35\Rightarrow y = \frac{3}{5} is a horizontal asymptotes .

Find limx(x2+1x)\lim_{x\to \infty} \left ( \sqrt{x^2+1}-x \right )

limx(x2+1x)=limx(x2+1x)x2+1+xx2+1+x=limx(x2+1x2x2+1+x)=0\lim_{x\to \infty} \left ( \sqrt{x^2+1}-x \right ) = \lim_{x\to \infty} \left ( \sqrt{x^2+1}-x \right ) \cdot \frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}+x} = \lim_{x\to \infty} \left ( \frac{x^2+1-x^2}{\sqrt{x^2+1}+x} \right ) = 0
y=0\Rightarrow y = 0 is a horizontal asymptote .

Find the horizontal asymptotes and vertical asymptotes of the graph of the function
f(x)=2x2+13x5f(x) = \frac{\sqrt{2x^2+1}}{3x-5}

limxf(x)=limx(2x2+13x51x1x)=limx(2+1x235x)=23\lim_{x \to \infty}f(x) = \lim_{x\to \infty} \left ( \frac{\sqrt{2x^2+1}}{3x-5} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \right ) = \lim_{x\to \infty} \left ( \frac{\sqrt{2+\frac{1}{x^2}}}{3-\frac{5}{x}} \right ) = \frac{\sqrt{2}}{3}

limxf(x)=limx(2x2+13x51x1x)=limx(2x2+13x51x1x)\lim_{x \to -\infty}f(x) = \lim_{x\to -\infty} \left ( \frac{\sqrt{2x^2+1}}{3x-5} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \right ) = \lim_{x\to -\infty} \left ( \frac{\sqrt{2x^2+1}}{3x-5} \cdot \frac{-\frac{1}{|x|}}{\frac{1}{x}} \right )
=limx(2+1x235x(1))=23= \lim_{x\to -\infty} \left ( \frac{\sqrt{2+\frac{1}{x^2}}}{3-\frac{5}{x}} \cdot (-1) \right ) = -\frac{\sqrt{2}}{3}
y=±23\therefore y = \pm \frac{\sqrt{2}}{3} are horizontal asymptotes of the graph of f(x)

# Define

The straight line y=mx+ky = mx+k is an asymptote of the graph of the function y=f(x)y = f(x) if limx(f(x)mxk)=0\lim_{x\to \infty}(f(x)-mx-k) = 0 or limx(f(x)mxk)=0\lim_{x\to -\infty}(f(x)-mx-k) = 0.The straight line y=mx+ky = mx+k is called horizontal asymptote if m=0m = 0,and is called a slant asymptote if m0m \neq 0

Remark

If y=mx+ky = mx+k is a slant asymptote of the graph of the function y=f(x)y = f(x),then
m=limx(f(x)x)m = \lim_{x\to \infty}(\frac{f(x)}{x}) or m=limx(f(x)x)m = \lim_{x\to -\infty}(\frac{f(x)}{x})
and k=limx(f(x)mx)k = \lim_{x\to \infty}(f(x)-mx) or k=limx(f(x)mx)k = \lim_{x\to -\infty}(f(x)-mx)

Find the asymptote of the graph of the function
f(x)=x3+33x24x+5f(x) = \frac{x^3+3}{3x^2-4x+5}

Consider limxf(x)x=limxx3+33x34x2+5x=limx1+3x334x+5x2=13\lim_{x\to \infty}\frac{f(x)}{x} = \lim_{x\to \infty}\frac{x^3+3}{3x^3-4x^2+5x} = \lim_{x\to \infty}\frac{1+\frac{3}{x^3}}{3-\frac{4}{x}+\frac{5}{x^2}} = \frac{1}{3} Let m=13m = \frac{1}{3}

Consider limx(f(x)13x)=limx(x3+33x24x+53x34x2+5x3(3x24x+5))=limx(4x25x+99x212x+15)=49\lim_{x\to \infty}(f(x)-\frac{1}{3}x) = \lim_{x\to \infty} \left (\frac{x^3+3}{3x^2-4x+5} - \frac{3x^3-4x^2+5x}{3(3x^2-4x+5)} \right ) = \lim_{x\to \infty} \left (\frac{4x^2-5x+9}{9x^2-12x+15} \right ) = \frac{4}{9}

y=13x+49\therefore y = \frac{1}{3}x+\frac{4}{9} is a slant asymptote of the graph of f

# What is the number e?

# Define

elimx(1+1x)xe \equiv \lim_{x\to \infty}(1+\frac{1}{x})^x

補充

Let h=1xh = \frac{1}{x}. Then h0+h \to 0^+ as xe=limh0+(1+h)1hx \to \infty \Rightarrow e = \lim_{h\to 0^+}(1+h)^\frac{1}{h}
當 h 足夠靠近0+0^+,則e(1+h)1heh(1+h)eh1he \approx (1+h)^\frac{1}{h} \Rightarrow e^h \approx (1+h) \Rightarrow e^h -1 \approx h
eh1heh1h1\Rightarrow e^h-1 \approx h \Rightarrow \frac{e^h-1}{h} \approx 1
In fact, limh0eh1h1\lim_{h \to 0^-}\frac{e^h-1}{h} \approx 1
limh0eh1h1\Rightarrow \lim_{h \to 0}\frac{e^h-1}{h} \approx 1

# Differentiation

If limxaf(x)f(a)xa\lim_{x\to a}\frac{f(x)-f(a)}{x-a} exists.
That we say the slope of the tangent line (切線斜率) of f at a is m=limxaf(x)f(a)xam = \lim_{x\to a}\frac{f(x)-f(a)}{x-a}

Find the tangent line of the graph of f(x)=exf(x) = e^x at x=2x=2

limx2f(x)f(2)x2\lim_{x \to 2} \frac{f(x)-f(2)}{x-2} Let h=x2h = x-2 Then h0h \to 0 as x2x \to 2

limx2f(x)f(2)x2=limh0f(2+h)f(2)h=limh0e2+he2h\because \lim_{x \to 2} \frac{f(x)-f(2)}{x-2} = \lim_{h \to 0} \frac{f(2+h)-f(2)}{h} = \lim_{h \to 0} \frac{e^{2+h}-e^2}{h}
=limh0e2(eh1)h=e2limh0eh1h=e2= \lim_{h \to 0} \frac{e^2(e^h-1)}{h} = e^2 \lim_{h \to 0} \frac{e^h-1}{h} = e^2
m=e2\therefore m = e^2, the tangent line is ye2=e2(x2)y-e^2 = e^2(x-2)

Find the tangent line of the graph of f(x)=sinxf(x) = sinx at x=π3x=\frac{\pi}{3}

limxπ3f(x)f(π3)xπ3\lim_{x \to \frac{\pi}{3}} \frac{f(x)-f(\frac{\pi}{3})}{x-\frac{\pi}{3}} Let h=xπ3h = x-\frac{\pi}{3} Then h0h \to 0 as xπ3x \to \frac{\pi}{3}

limxπ3f(x)f(π3)xπ3=limh0f(π3+h)f(π3)h=limh0sin(π3+h)sinπ3h=limh0sinπ3cosh+cosπ3sinhsinπ3h=limh0sinπ3cosh1h+cosπ3sinhh=sinπ30+cosπ31=12\because \lim_{x \to \frac{\pi}{3}} \frac{f(x)-f(\frac{\pi}{3})}{x-\frac{\pi}{3}} = \lim_{h \to 0} \frac{f(\frac{\pi}{3}+h)-f(\frac{\pi}{3})}{h} = \lim_{h \to 0} \frac{sin(\frac{\pi}{3}+h)-sin\frac{\pi}{3}}{h} = \lim_{h \to 0} \frac{sin\frac{\pi}{3}cosh+cos\frac{\pi}{3}sinh - sin\frac{\pi}{3}}{h} = \lim_{h \to 0} sin\frac{\pi}{3} \cdot \frac{cosh-1}{h} + cos \frac{\pi}{3}\frac{sinh}{h} = sin\frac{\pi}{3} \cdot 0 + cos\frac{\pi}{3} \cdot 1 = \frac{1}{2}
m=12\therefore m = \frac{1}{2}, the tangent line is ysinπ3=12(xπ3)y -sin \frac{\pi}{3} = \frac{1}{2}(x-\frac{\pi}{3})

# Define

The derivative (導數) of a function ff at a number a denote by f(a)f'(a) is f(x)=limxaf(x)f(a)xa=limh0f(a+h)f(a)hf'(x) = \lim_{x \to a} \frac{f(x)-f(a)}{x-a} = \lim_{h\to 0}\frac{f(a+h)-f(a)}{h} if this limit exists.

# Define

We can let a vary and regard ff' as a new function f(x)=limΔx0f(x+Δx)f(x)Δx=limh0f(x+h)f(x)hf'(x) = \lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} where ff' is called the derivative (導函數) of f.

Example
  1. The derivative of f(x)=sinxf(x) = sinx is f(x)=cosxf'(x) = cosx
  2. The derivative of f(x)=exf(x) = e^x is f(x)=exf'(x) = e^x

Find f(0)f'(0) if ff is defined by
f(x)={1cosxxifx00ifx=0f(x) = \left\{\begin{matrix} \frac{1-cosx}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x= 0 \end{matrix}\right.

Consider limh0f(0+h)f(0)h=limh01coshh0h=limh01coshh2\lim_{h \to 0}\frac{f(0+h)-f(0)}{h} = \lim_{h \to 0}\frac{\frac{1-cosh}{h}-0}{h} = \lim_{h \to 0}\frac{1-cosh}{h^2}
=limh0(1coshh21+cosh1+cosh)=limh0(sin2hh211+cosh)=12f(0)=12= \lim_{h \to 0} \left ( \frac{1-cosh}{h^2} \cdot \frac{1+cosh}{1+cosh} \right ) = \lim_{h \to 0} \left ( \frac{sin^2h}{h^2} \cdot \frac{1}{1+cosh} \right ) = \frac{1}{2} \; \therefore f'(0) = \frac{1}{2}

Find the derivative of f(x)=1xf(x) = \sqrt{1-x}and compare domains (定義域) of ff and ff'

Consider limh01xh1xh=limh0(1xh1xh1xh+1x1xh+1x)=limh01xh1+xh(1xh+1x)=121x\lim_{h \to 0}\frac{\sqrt{1-x-h}-\sqrt{1-x}}{h} = \lim_{h \to 0}\left ( \frac{\sqrt{1-x-h}-\sqrt{1-x}}{h} \cdot \frac{\sqrt{1-x-h}+\sqrt{1-x}}{\sqrt{1-x-h}+\sqrt{1-x}} \right ) = \lim_{h\to 0}\frac{1-x-h-1+x}{h(\sqrt{1-x-h}+\sqrt{1-x})} = \frac{-1}{2\sqrt{1-x}}
f(x)=121x\Rightarrow f'(x) = \frac{-1}{2\sqrt{1-x}}

The domoin of ff is {xx1}=A\{x| x \le 1 \} = A
The domoin of ff' is {xx<1}=B\{x| x < 1 \} = B
AB\Rightarrow A \supseteq B

# Define

  1. The process of finding the derivative of a function is called differentiation (微分)
  2. A function is differentiable (可微分) at a if its derivative exists at a.
  3. A function is differentiable on (a,b)(a,b) if it is differentiable at every points on (a,b)(a,b)

Find the derivative of f defined by f(x)=xf(x) = |x|

f(x)=x={xifx0xifx<0f(x) = |x| = \left\{\begin{matrix} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{matrix}\right.
If x>0x>0, then limh0f(x+h)f(x)h=limh0x+hxh=1f(x)=1\lim_{h \to 0}\frac{f(x+h)-f(x)}{h} = \lim_{h \to 0}\frac{x+h-x}{h} = 1 \Rightarrow f'(x) = 1
If x<0x<0, then
limh0f(x+h)f(x)h=limh0xh+xh=1f(x)=1\lim_{h \to 0}\frac{f(x+h)-f(x)}{h} = \lim_{h \to 0}\frac{-x-h+x}{h} = -1\Rightarrow f'(x) = -1
If x=0x=0, then limh0+f(0+h)f(0)h=limh0+hh=1limh0f(0+h)f(0)h=limh0hh=1\begin{matrix} \lim_{h \to 0^+}\frac{f(0+h)-f(0)}{h} = \lim_{h \to 0^+}\frac{h}{h} = 1 \\ \lim_{h \to 0^-}\frac{f(0+h)-f(0)}{h} = \lim_{h \to 0^-}\frac{-h}{h} = -1 \end{matrix}
limh0f(0+h)f(0)h\Rightarrow \lim_{h \to 0}\frac{f(0+h)-f(0)}{h} does not exists.

# Thm

If ff is differentiable on (a,b)(a,b), then ff is continuous on (a,b)(a,b).


# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay