Limits at infinity; Asymptotes What is the number e? Differentiation # Limits at infinity; Asymptotes# DefineIf the distance between the graph of a function and some fixed straight line approaches zero as a point on the graph moves increasingly for from the origin, we say that the graph approaches the line asymptotically
and that the line is a asymptote
(漸進線) of the graph
f ( x ) = t a n x f(x) = tan x f ( x ) = t a n x f ( x ) = l o g 2 x f(x) = log_2x f ( x ) = l o g 2 x ∵ lim x → n π + π 2 − t a n x = ∞ , lim x → n π + π 2 + t a n x = − ∞ \because \lim_{x\to n\pi + \frac{\pi}{2}^-} tanx= \infty, \lim_{x\to n\pi + \frac{\pi}{2}^+} tanx= -\infty ∵ lim x → n π + 2 π − t a n x = ∞ , lim x → n π + 2 π + t a n x = − ∞ f ( x ) = t a n x f(x) = tanx f ( x ) = t a n x has vertical asymptotes
x = n π + π 2 ∀ n ∈ Z x = n\pi + \frac{\pi}{2} \forall n \in \mathbb{Z} x = n π + 2 π ∀ n ∈ Z
∵ lim x → 0 + l o g 2 x = − ∞ \because \lim_{x\to 0^+}log_2x = -\infty ∵ lim x → 0 + l o g 2 x = − ∞ f ( x ) = l o g 2 x f(x) = log_2x f ( x ) = l o g 2 x has vertical asymptote
x = 0 x = 0 x = 0
Find lim x → ∞ ( 3 x 2 − x − 2 5 x 2 + 4 x + 1 ) \lim_{x\to \infty} \left ( \frac{3x^2-x-2}{5x^2+4x+1} \right ) lim x → ∞ ( 5 x 2 + 4 x + 1 3 x 2 − x − 2 )
lim x → ∞ ( 3 x 2 − x − 2 5 x 2 + 4 x + 1 ⋅ 1 x 2 1 x 2 ) = lim x → ∞ ( 3 − 1 x − 2 x 2 5 + 4 x + 1 x 2 ) = 3 5 \lim_{x\to \infty} \left ( \frac{3x^2-x-2}{5x^2+4x+1} \cdot \frac{\frac{1}{x^2} }{\frac{1}{x^2}} \right )= \lim_{x\to \infty} \left ( \frac{3-\frac{1}{x}-\frac{2}{x^2} }{5+\frac{4}{x} +\frac{1}{x^2} } \right ) = \frac{3}{5} lim x → ∞ ( 5 x 2 + 4 x + 1 3 x 2 − x − 2 ⋅ x 2 1 x 2 1 ) = lim x → ∞ ( 5 + x 4 + x 2 1 3 − x 1 − x 2 2 ) = 5 3 ⇒ y = 3 5 \Rightarrow y = \frac{3}{5} ⇒ y = 5 3 is a horizontal asymptotes
.
Find lim x → ∞ ( x 2 + 1 − x ) \lim_{x\to \infty} \left ( \sqrt{x^2+1}-x \right ) lim x → ∞ ( x 2 + 1 − x )
lim x → ∞ ( x 2 + 1 − x ) = lim x → ∞ ( x 2 + 1 − x ) ⋅ x 2 + 1 + x x 2 + 1 + x = lim x → ∞ ( x 2 + 1 − x 2 x 2 + 1 + x ) = 0 \lim_{x\to \infty} \left ( \sqrt{x^2+1}-x \right ) = \lim_{x\to \infty} \left ( \sqrt{x^2+1}-x \right ) \cdot \frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}+x} = \lim_{x\to \infty} \left ( \frac{x^2+1-x^2}{\sqrt{x^2+1}+x} \right ) = 0 lim x → ∞ ( x 2 + 1 − x ) = lim x → ∞ ( x 2 + 1 − x ) ⋅ x 2 + 1 + x x 2 + 1 + x = lim x → ∞ ( x 2 + 1 + x x 2 + 1 − x 2 ) = 0 ⇒ y = 0 \Rightarrow y = 0 ⇒ y = 0 is a horizontal asymptote
.
Find the horizontal asymptotes
and vertical asymptotes
of the graph of the functionf ( x ) = 2 x 2 + 1 3 x − 5 f(x) = \frac{\sqrt{2x^2+1}}{3x-5} f ( x ) = 3 x − 5 2 x 2 + 1
lim x → ∞ f ( x ) = lim x → ∞ ( 2 x 2 + 1 3 x − 5 ⋅ 1 x 1 x ) = lim x → ∞ ( 2 + 1 x 2 3 − 5 x ) = 2 3 \lim_{x \to \infty}f(x) = \lim_{x\to \infty} \left ( \frac{\sqrt{2x^2+1}}{3x-5} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \right ) = \lim_{x\to \infty} \left ( \frac{\sqrt{2+\frac{1}{x^2}}}{3-\frac{5}{x}} \right ) = \frac{\sqrt{2}}{3} lim x → ∞ f ( x ) = lim x → ∞ ( 3 x − 5 2 x 2 + 1 ⋅ x 1 x 1 ) = lim x → ∞ ( 3 − x 5 2 + x 2 1 ) = 3 2
lim x → − ∞ f ( x ) = lim x → − ∞ ( 2 x 2 + 1 3 x − 5 ⋅ 1 x 1 x ) = lim x → − ∞ ( 2 x 2 + 1 3 x − 5 ⋅ − 1 ∣ x ∣ 1 x ) \lim_{x \to -\infty}f(x) = \lim_{x\to -\infty} \left ( \frac{\sqrt{2x^2+1}}{3x-5} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \right ) = \lim_{x\to -\infty} \left ( \frac{\sqrt{2x^2+1}}{3x-5} \cdot \frac{-\frac{1}{|x|}}{\frac{1}{x}} \right ) lim x → − ∞ f ( x ) = lim x → − ∞ ( 3 x − 5 2 x 2 + 1 ⋅ x 1 x 1 ) = lim x → − ∞ ( 3 x − 5 2 x 2 + 1 ⋅ x 1 − ∣ x ∣ 1 ) = lim x → − ∞ ( 2 + 1 x 2 3 − 5 x ⋅ ( − 1 ) ) = − 2 3 = \lim_{x\to -\infty} \left ( \frac{\sqrt{2+\frac{1}{x^2}}}{3-\frac{5}{x}} \cdot (-1) \right ) = -\frac{\sqrt{2}}{3} = lim x → − ∞ ( 3 − x 5 2 + x 2 1 ⋅ ( − 1 ) ) = − 3 2 ∴ y = ± 2 3 \therefore y = \pm \frac{\sqrt{2}}{3} ∴ y = ± 3 2 are horizontal asymptotes
of the graph of f(x)
# DefineThe straight line y = m x + k y = mx+k y = m x + k is an asymptote of the graph of the function y = f ( x ) y = f(x) y = f ( x ) if lim x → ∞ ( f ( x ) − m x − k ) = 0 \lim_{x\to \infty}(f(x)-mx-k) = 0 lim x → ∞ ( f ( x ) − m x − k ) = 0 or lim x → − ∞ ( f ( x ) − m x − k ) = 0 \lim_{x\to -\infty}(f(x)-mx-k) = 0 lim x → − ∞ ( f ( x ) − m x − k ) = 0 .The straight line y = m x + k y = mx+k y = m x + k is called horizontal asymptote
if m = 0 m = 0 m = 0 ,and is called a slant asymptote
if m ≠ 0 m \neq 0 m = 0
Remark If y = m x + k y = mx+k y = m x + k is a slant asymptote
of the graph of the function y = f ( x ) y = f(x) y = f ( x ) ,thenm = lim x → ∞ ( f ( x ) x ) m = \lim_{x\to \infty}(\frac{f(x)}{x}) m = lim x → ∞ ( x f ( x ) ) or m = lim x → − ∞ ( f ( x ) x ) m = \lim_{x\to -\infty}(\frac{f(x)}{x}) m = lim x → − ∞ ( x f ( x ) ) and k = lim x → ∞ ( f ( x ) − m x ) k = \lim_{x\to \infty}(f(x)-mx) k = lim x → ∞ ( f ( x ) − m x ) or k = lim x → − ∞ ( f ( x ) − m x ) k = \lim_{x\to -\infty}(f(x)-mx) k = lim x → − ∞ ( f ( x ) − m x )
Find the asymptote
of the graph of the functionf ( x ) = x 3 + 3 3 x 2 − 4 x + 5 f(x) = \frac{x^3+3}{3x^2-4x+5} f ( x ) = 3 x 2 − 4 x + 5 x 3 + 3
Consider lim x → ∞ f ( x ) x = lim x → ∞ x 3 + 3 3 x 3 − 4 x 2 + 5 x = lim x → ∞ 1 + 3 x 3 3 − 4 x + 5 x 2 = 1 3 \lim_{x\to \infty}\frac{f(x)}{x} = \lim_{x\to \infty}\frac{x^3+3}{3x^3-4x^2+5x} = \lim_{x\to \infty}\frac{1+\frac{3}{x^3}}{3-\frac{4}{x}+\frac{5}{x^2}} = \frac{1}{3} lim x → ∞ x f ( x ) = lim x → ∞ 3 x 3 − 4 x 2 + 5 x x 3 + 3 = lim x → ∞ 3 − x 4 + x 2 5 1 + x 3 3 = 3 1 Let m = 1 3 m = \frac{1}{3} m = 3 1
Consider lim x → ∞ ( f ( x ) − 1 3 x ) = lim x → ∞ ( x 3 + 3 3 x 2 − 4 x + 5 − 3 x 3 − 4 x 2 + 5 x 3 ( 3 x 2 − 4 x + 5 ) ) = lim x → ∞ ( 4 x 2 − 5 x + 9 9 x 2 − 12 x + 15 ) = 4 9 \lim_{x\to \infty}(f(x)-\frac{1}{3}x) = \lim_{x\to \infty} \left (\frac{x^3+3}{3x^2-4x+5} - \frac{3x^3-4x^2+5x}{3(3x^2-4x+5)} \right ) = \lim_{x\to \infty} \left (\frac{4x^2-5x+9}{9x^2-12x+15} \right ) = \frac{4}{9} lim x → ∞ ( f ( x ) − 3 1 x ) = lim x → ∞ ( 3 x 2 − 4 x + 5 x 3 + 3 − 3 ( 3 x 2 − 4 x + 5 ) 3 x 3 − 4 x 2 + 5 x ) = lim x → ∞ ( 9 x 2 − 1 2 x + 1 5 4 x 2 − 5 x + 9 ) = 9 4
∴ y = 1 3 x + 4 9 \therefore y = \frac{1}{3}x+\frac{4}{9} ∴ y = 3 1 x + 9 4 is a slant asymptote
of the graph of f
# What is the number e?# Definee ≡ lim x → ∞ ( 1 + 1 x ) x e \equiv \lim_{x\to \infty}(1+\frac{1}{x})^x e ≡ lim x → ∞ ( 1 + x 1 ) x
補充 Let h = 1 x h = \frac{1}{x} h = x 1 . Then h → 0 + h \to 0^+ h → 0 + as x → ∞ ⇒ e = lim h → 0 + ( 1 + h ) 1 h x \to \infty \Rightarrow e = \lim_{h\to 0^+}(1+h)^\frac{1}{h} x → ∞ ⇒ e = lim h → 0 + ( 1 + h ) h 1 當 h 足夠靠近0 + 0^+ 0 + ,則e ≈ ( 1 + h ) 1 h ⇒ e h ≈ ( 1 + h ) ⇒ e h − 1 ≈ h e \approx (1+h)^\frac{1}{h} \Rightarrow e^h \approx (1+h) \Rightarrow e^h -1 \approx h e ≈ ( 1 + h ) h 1 ⇒ e h ≈ ( 1 + h ) ⇒ e h − 1 ≈ h ⇒ e h − 1 ≈ h ⇒ e h − 1 h ≈ 1 \Rightarrow e^h-1 \approx h \Rightarrow \frac{e^h-1}{h} \approx 1 ⇒ e h − 1 ≈ h ⇒ h e h − 1 ≈ 1 In fact, lim h → 0 − e h − 1 h ≈ 1 \lim_{h \to 0^-}\frac{e^h-1}{h} \approx 1 lim h → 0 − h e h − 1 ≈ 1 ⇒ lim h → 0 e h − 1 h ≈ 1 \Rightarrow \lim_{h \to 0}\frac{e^h-1}{h} \approx 1 ⇒ lim h → 0 h e h − 1 ≈ 1
# DifferentiationIf lim x → a f ( x ) − f ( a ) x − a \lim_{x\to a}\frac{f(x)-f(a)}{x-a} lim x → a x − a f ( x ) − f ( a ) exists. That we say the slope of the tangent line
(切線斜率) of f at a is m = lim x → a f ( x ) − f ( a ) x − a m = \lim_{x\to a}\frac{f(x)-f(a)}{x-a} m = lim x → a x − a f ( x ) − f ( a )
Find the tangent line of the graph of f ( x ) = e x f(x) = e^x f ( x ) = e x at x = 2 x=2 x = 2
lim x → 2 f ( x ) − f ( 2 ) x − 2 \lim_{x \to 2} \frac{f(x)-f(2)}{x-2} lim x → 2 x − 2 f ( x ) − f ( 2 ) Let h = x − 2 h = x-2 h = x − 2 Then h → 0 h \to 0 h → 0 as x → 2 x \to 2 x → 2
∵ lim x → 2 f ( x ) − f ( 2 ) x − 2 = lim h → 0 f ( 2 + h ) − f ( 2 ) h = lim h → 0 e 2 + h − e 2 h \because \lim_{x \to 2} \frac{f(x)-f(2)}{x-2} = \lim_{h \to 0} \frac{f(2+h)-f(2)}{h} = \lim_{h \to 0} \frac{e^{2+h}-e^2}{h} ∵ lim x → 2 x − 2 f ( x ) − f ( 2 ) = lim h → 0 h f ( 2 + h ) − f ( 2 ) = lim h → 0 h e 2 + h − e 2 = lim h → 0 e 2 ( e h − 1 ) h = e 2 lim h → 0 e h − 1 h = e 2 = \lim_{h \to 0} \frac{e^2(e^h-1)}{h} = e^2 \lim_{h \to 0} \frac{e^h-1}{h} = e^2 = lim h → 0 h e 2 ( e h − 1 ) = e 2 lim h → 0 h e h − 1 = e 2 ∴ m = e 2 \therefore m = e^2 ∴ m = e 2 , the tangent line is y − e 2 = e 2 ( x − 2 ) y-e^2 = e^2(x-2) y − e 2 = e 2 ( x − 2 )
Find the tangent line of the graph of f ( x ) = s i n x f(x) = sinx f ( x ) = s i n x at x = π 3 x=\frac{\pi}{3} x = 3 π
lim x → π 3 f ( x ) − f ( π 3 ) x − π 3 \lim_{x \to \frac{\pi}{3}} \frac{f(x)-f(\frac{\pi}{3})}{x-\frac{\pi}{3}} lim x → 3 π x − 3 π f ( x ) − f ( 3 π ) Let h = x − π 3 h = x-\frac{\pi}{3} h = x − 3 π Then h → 0 h \to 0 h → 0 as x → π 3 x \to \frac{\pi}{3} x → 3 π
∵ lim x → π 3 f ( x ) − f ( π 3 ) x − π 3 = lim h → 0 f ( π 3 + h ) − f ( π 3 ) h = lim h → 0 s i n ( π 3 + h ) − s i n π 3 h = lim h → 0 s i n π 3 c o s h + c o s π 3 s i n h − s i n π 3 h = lim h → 0 s i n π 3 ⋅ c o s h − 1 h + c o s π 3 s i n h h = s i n π 3 ⋅ 0 + c o s π 3 ⋅ 1 = 1 2 \because \lim_{x \to \frac{\pi}{3}} \frac{f(x)-f(\frac{\pi}{3})}{x-\frac{\pi}{3}} = \lim_{h \to 0} \frac{f(\frac{\pi}{3}+h)-f(\frac{\pi}{3})}{h} = \lim_{h \to 0} \frac{sin(\frac{\pi}{3}+h)-sin\frac{\pi}{3}}{h} = \lim_{h \to 0} \frac{sin\frac{\pi}{3}cosh+cos\frac{\pi}{3}sinh - sin\frac{\pi}{3}}{h} = \lim_{h \to 0} sin\frac{\pi}{3} \cdot \frac{cosh-1}{h} + cos \frac{\pi}{3}\frac{sinh}{h} = sin\frac{\pi}{3} \cdot 0 + cos\frac{\pi}{3} \cdot 1 = \frac{1}{2} ∵ lim x → 3 π x − 3 π f ( x ) − f ( 3 π ) = lim h → 0 h f ( 3 π + h ) − f ( 3 π ) = lim h → 0 h s i n ( 3 π + h ) − s i n 3 π = lim h → 0 h s i n 3 π c o s h + c o s 3 π s i n h − s i n 3 π = lim h → 0 s i n 3 π ⋅ h c o s h − 1 + c o s 3 π h s i n h = s i n 3 π ⋅ 0 + c o s 3 π ⋅ 1 = 2 1 ∴ m = 1 2 \therefore m = \frac{1}{2} ∴ m = 2 1 , the tangent line is y − s i n π 3 = 1 2 ( x − π 3 ) y -sin \frac{\pi}{3} = \frac{1}{2}(x-\frac{\pi}{3}) y − s i n 3 π = 2 1 ( x − 3 π )
# DefineThe derivative
(導數) of a function f f f at a number a denote by f ′ ( a ) f'(a) f ′ ( a ) is f ′ ( x ) = lim x → a f ( x ) − f ( a ) x − a = lim h → 0 f ( a + h ) − f ( a ) h f'(x) = \lim_{x \to a} \frac{f(x)-f(a)}{x-a} = \lim_{h\to 0}\frac{f(a+h)-f(a)}{h} f ′ ( x ) = lim x → a x − a f ( x ) − f ( a ) = lim h → 0 h f ( a + h ) − f ( a ) if this limit exists.
# DefineWe can let a vary and regard f ′ f' f ′ as a new function f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim h → 0 f ( x + h ) − f ( x ) h f'(x) = \lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} f ′ ( x ) = lim Δ x → 0 Δ x f ( x + Δ x ) − f ( x ) = lim h → 0 h f ( x + h ) − f ( x ) where f ′ f' f ′ is called the derivative
(導函數) of f.
Example The derivative of f ( x ) = s i n x f(x) = sinx f ( x ) = s i n x is f ′ ( x ) = c o s x f'(x) = cosx f ′ ( x ) = c o s x The derivative of f ( x ) = e x f(x) = e^x f ( x ) = e x is f ′ ( x ) = e x f'(x) = e^x f ′ ( x ) = e x Find f ′ ( 0 ) f'(0) f ′ ( 0 ) if f f f is defined byf ( x ) = { 1 − c o s x x if x ≠ 0 0 if x = 0 f(x) = \left\{\begin{matrix} \frac{1-cosx}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x= 0 \end{matrix}\right. f ( x ) = { x 1 − c o s x 0 if x = 0 if x = 0
Consider lim h → 0 f ( 0 + h ) − f ( 0 ) h = lim h → 0 1 − c o s h h − 0 h = lim h → 0 1 − c o s h h 2 \lim_{h \to 0}\frac{f(0+h)-f(0)}{h} = \lim_{h \to 0}\frac{\frac{1-cosh}{h}-0}{h} = \lim_{h \to 0}\frac{1-cosh}{h^2} lim h → 0 h f ( 0 + h ) − f ( 0 ) = lim h → 0 h h 1 − c o s h − 0 = lim h → 0 h 2 1 − c o s h = lim h → 0 ( 1 − c o s h h 2 ⋅ 1 + c o s h 1 + c o s h ) = lim h → 0 ( s i n 2 h h 2 ⋅ 1 1 + c o s h ) = 1 2 ∴ f ′ ( 0 ) = 1 2 = \lim_{h \to 0} \left ( \frac{1-cosh}{h^2} \cdot \frac{1+cosh}{1+cosh} \right ) = \lim_{h \to 0} \left ( \frac{sin^2h}{h^2} \cdot \frac{1}{1+cosh} \right ) = \frac{1}{2} \; \therefore f'(0) = \frac{1}{2} = lim h → 0 ( h 2 1 − c o s h ⋅ 1 + c o s h 1 + c o s h ) = lim h → 0 ( h 2 s i n 2 h ⋅ 1 + c o s h 1 ) = 2 1 ∴ f ′ ( 0 ) = 2 1
Find the derivative of f ( x ) = 1 − x f(x) = \sqrt{1-x} f ( x ) = 1 − x and compare domains
(定義域) of f f f and f ′ f' f ′
Consider lim h → 0 1 − x − h − 1 − x h = lim h → 0 ( 1 − x − h − 1 − x h ⋅ 1 − x − h + 1 − x 1 − x − h + 1 − x ) = lim h → 0 1 − x − h − 1 + x h ( 1 − x − h + 1 − x ) = − 1 2 1 − x \lim_{h \to 0}\frac{\sqrt{1-x-h}-\sqrt{1-x}}{h} = \lim_{h \to 0}\left ( \frac{\sqrt{1-x-h}-\sqrt{1-x}}{h} \cdot \frac{\sqrt{1-x-h}+\sqrt{1-x}}{\sqrt{1-x-h}+\sqrt{1-x}} \right ) = \lim_{h\to 0}\frac{1-x-h-1+x}{h(\sqrt{1-x-h}+\sqrt{1-x})} = \frac{-1}{2\sqrt{1-x}} lim h → 0 h 1 − x − h − 1 − x = lim h → 0 ( h 1 − x − h − 1 − x ⋅ 1 − x − h + 1 − x 1 − x − h + 1 − x ) = lim h → 0 h ( 1 − x − h + 1 − x ) 1 − x − h − 1 + x = 2 1 − x − 1 ⇒ f ′ ( x ) = − 1 2 1 − x \Rightarrow f'(x) = \frac{-1}{2\sqrt{1-x}} ⇒ f ′ ( x ) = 2 1 − x − 1
The domoin of f f f is { x ∣ x ≤ 1 } = A \{x| x \le 1 \} = A { x ∣ x ≤ 1 } = A The domoin of f ′ f' f ′ is { x ∣ x < 1 } = B \{x| x < 1 \} = B { x ∣ x < 1 } = B ⇒ A ⊇ B \Rightarrow A \supseteq B ⇒ A ⊇ B
# DefineThe process of finding the derivative of a function is called differentiation
(微分) A function is differentiable
(可微分) at a if its derivative exists at a. A function is differentiable on ( a , b ) (a,b) ( a , b ) if it is differentiable at every points on ( a , b ) (a,b) ( a , b ) Find the derivative of f defined by f ( x ) = ∣ x ∣ f(x) = |x| f ( x ) = ∣ x ∣
f ( x ) = ∣ x ∣ = { x if x ≥ 0 − x if x < 0 f(x) = |x| = \left\{\begin{matrix} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{matrix}\right. f ( x ) = ∣ x ∣ = { x − x if x ≥ 0 if x < 0 If x > 0 x>0 x > 0 , then lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 x + h − x h = 1 ⇒ f ′ ( x ) = 1 \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} = \lim_{h \to 0}\frac{x+h-x}{h} = 1 \Rightarrow f'(x) = 1 lim h → 0 h f ( x + h ) − f ( x ) = lim h → 0 h x + h − x = 1 ⇒ f ′ ( x ) = 1 If x < 0 x<0 x < 0 , thenlim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 − x − h + x h = − 1 ⇒ f ′ ( x ) = − 1 \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} = \lim_{h \to 0}\frac{-x-h+x}{h} = -1\Rightarrow f'(x) = -1 lim h → 0 h f ( x + h ) − f ( x ) = lim h → 0 h − x − h + x = − 1 ⇒ f ′ ( x ) = − 1 If x = 0 x=0 x = 0 , then lim h → 0 + f ( 0 + h ) − f ( 0 ) h = lim h → 0 + h h = 1 lim h → 0 − f ( 0 + h ) − f ( 0 ) h = lim h → 0 − − h h = − 1 \begin{matrix} \lim_{h \to 0^+}\frac{f(0+h)-f(0)}{h} = \lim_{h \to 0^+}\frac{h}{h} = 1 \\ \lim_{h \to 0^-}\frac{f(0+h)-f(0)}{h} = \lim_{h \to 0^-}\frac{-h}{h} = -1 \end{matrix} lim h → 0 + h f ( 0 + h ) − f ( 0 ) = lim h → 0 + h h = 1 lim h → 0 − h f ( 0 + h ) − f ( 0 ) = lim h → 0 − h − h = − 1 ⇒ lim h → 0 f ( 0 + h ) − f ( 0 ) h \Rightarrow \lim_{h \to 0}\frac{f(0+h)-f(0)}{h} ⇒ lim h → 0 h f ( 0 + h ) − f ( 0 ) does not exists.
# ThmIf f f f is differentiable
on ( a , b ) (a,b) ( a , b ) , then f f f is continuous
on ( a , b ) (a,b) ( a , b ) .
# Reference蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109