Rule of Differentiation Chain Rule Implicit Differentiation # Rules of Differentiationfunctions derivatives functions derivatives functions derivatives f g ( x ) fg(x) f g ( x ) f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) f'(x)g(x)+f(x)g'(x) f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) s i n x sinx s i n x c o s x cosx c o s x s e c x secx s e c x t a n x s e c x tanxsecx t a n x s e c x f g ( x ) \frac{f}{g}(x) g f ( x ) f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) ( g ( x ) ) 2 . \frac{f'(x)g(x) + f(x)g'(x)}{(g(x))^2}. ( g ( x ) ) 2 f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) . c o s x cosx c o s x − s i n x -sinx − s i n x c s c x cscx c s c x − c o t x c s c x -cotxcscx − c o t x c s c x e x e^x e x e x e^x e x t a n x tanx t a n x s e c 2 x sec^2x s e c 2 x c o t x cotx c o t x − c s c 2 x -csc^2x − c s c 2 x
Find f ′ ( x ) f'(x) f ′ ( x )
f ( x ) = 1 x 2 + x 2 3 f(x) = \frac{1}{x^2}+\sqrt[3]{x^2} f ( x ) = x 2 1 + 3 x 2 .f ( x ) = e x + x 2 1 − 3 e x f(x) = \frac{e^x+x^2}{1-3e^x} f ( x ) = 1 − 3 e x e x + x 2 .f ( x ) = x 3 s i n x f(x) = x^3sinx f ( x ) = x 3 s i n x .f ( x ) = x 2 + x − 2 x 3 + 6 f(x) = \frac{x^2+x-2}{x^3+6} f ( x ) = x 3 + 6 x 2 + x − 2 .f ( x ) = x g ( x ) f(x) = \sqrt{x}g(x) f ( x ) = x g ( x ) ,where g ( 4 ) = 2 , g ′ ( 4 ) = 3 g(4) = 2,g'(4) = 3 g ( 4 ) = 2 , g ′ ( 4 ) = 3 . find f ′ ( 4 ) f'(4) f ′ ( 4 ) f ( x ) = x − 2 + x 2 3 f(x) = x^{-2}+x^{\frac{2}{3}} f ( x ) = x − 2 + x 3 2 ,f ( x ) = − 2 x − 3 + 2 3 x − 1 3 f(x) = -2x^{-3}+\frac{2}{3}x^{-\frac{1}{3}} f ( x ) = − 2 x − 3 + 3 2 x − 3 1
f ( x ) = ( e x + 2 x ) ( 1 − 3 e x ) − ( e x + x 2 ) ( − 3 e x ) ( 1 − 3 e x ) 2 = ( 3 x 2 − 6 x + 1 ) e x + 2 x ( 1 − 3 e x ) 2 f(x) = \frac{(e^x+2x)(1-3e^x)-(e^x+x^2)(-3e^x)}{(1-3e^x)^2} = \frac{(3x^2-6x+1)e^x+2x}{(1-3e^x)^2} f ( x ) = ( 1 − 3 e x ) 2 ( e x + 2 x ) ( 1 − 3 e x ) − ( e x + x 2 ) ( − 3 e x ) = ( 1 − 3 e x ) 2 ( 3 x 2 − 6 x + 1 ) e x + 2 x
f ( x ) = x 3 s i n x f(x) = x^3sinx f ( x ) = x 3 s i n x , f ′ ( x ) = 3 x 2 s i n x + x 3 c o s x f'(x) = 3x^2sinx+x^3cosx f ′ ( x ) = 3 x 2 s i n x + x 3 c o s x
f ( x ) = x 2 + x − 2 x 3 + 6 f(x) = \frac{x^2+x-2}{x^3+6} f ( x ) = x 3 + 6 x 2 + x − 2 , f ′ ( x ) = ( 2 x + 1 ) ( x 3 + 6 ) − ( x 2 + x − 2 ) ( 3 x 2 ) ( x 3 + 6 ) 2 = − x 4 − 2 x 3 + 6 x 2 + 12 x + 6 ( x 3 + 6 ) 2 f'(x) = \frac{(2x+1)(x^3+6)-(x^2+x-2)(3x^2)}{(x^3+6)^2}= \frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2} f ′ ( x ) = ( x 3 + 6 ) 2 ( 2 x + 1 ) ( x 3 + 6 ) − ( x 2 + x − 2 ) ( 3 x 2 ) = ( x 3 + 6 ) 2 − x 4 − 2 x 3 + 6 x 2 + 1 2 x + 6
∵ f ( x ) = x g ( x ) ∴ f ′ ( x ) = ( d d x x 1 2 ) g ( x ) + x 1 2 ( d d x g ( x ) ) = − 1 2 x ⋅ g ( x ) + x ⋅ g ′ ( x ) \because f(x) = \sqrt{x}g(x) \therefore f'(x) = (\frac{d}{dx}x^{\frac{1}{2}})g(x) + x^{\frac{1}{2}}(\frac{d}{dx}g(x)) = \frac{-1}{2\sqrt{x}}\cdot g(x) + \sqrt{x} \cdot g'(x) ∵ f ( x ) = x g ( x ) ∴ f ′ ( x ) = ( d x d x 2 1 ) g ( x ) + x 2 1 ( d x d g ( x ) ) = 2 x − 1 ⋅ g ( x ) + x ⋅ g ′ ( x ) ⇒ f ′ ( 4 ) = 1 4 ⋅ 2 + 2 ⋅ 3 = 13 2 \Rightarrow f'(4) = \frac{1}{4}\cdot 2 + 2 \cdot 3 = \frac{13}{2} ⇒ f ′ ( 4 ) = 4 1 ⋅ 2 + 2 ⋅ 3 = 2 1 3
# Chain RuleIf y = f ( u ) y=f(u) y = f ( u ) , u = g ( x ) u=g(x) u = g ( x ) are differentiable function then d y d x = d y d u ⋅ d u d x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} d x d y = d u d y ⋅ d x d u .
If g g g is differentiable at x x x , and f f f is differentiable at g ( x ) g(x) g ( x ) thend d x ( f ∘ g ) ( x ) = d f ( g ( x ) ) d g ( x ) ⋅ d g ( x ) d x = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx}(f \circ g)(x) = \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx} = f'(g(x)) \cdot g'(x) d x d ( f ∘ g ) ( x ) = d g ( x ) d f ( g ( x ) ) ⋅ d x d g ( x ) = f ′ ( g ( x ) ) ⋅ g ′ ( x )
h ( x ) = ( x 2 + 1 ) 100 h(x) = (x^2+1)^{100} h ( x ) = ( x 2 + 1 ) 1 0 0 Find h ′ ( x ) h'(x) h ′ ( x )
Let f ( x ) = x 100 , g ( x ) = x 2 + 1 f(x) = x^{100}, \; g(x) = x^2+1 f ( x ) = x 1 0 0 , g ( x ) = x 2 + 1 ⇒ h ( x ) = ( f ∘ g ) ( x ) = f ( g ( x ) ) \Rightarrow h(x) = (f\circ g)(x) = f(g(x)) ⇒ h ( x ) = ( f ∘ g ) ( x ) = f ( g ( x ) ) d d x h ( x ) = d d x ( f ( g ( x ) ) ) = d d ( x 2 + 1 ) ( x 2 + 1 ) 100 ⋅ d d x ( x 2 + 1 ) = 100 ( x 2 + 1 ) 99 ⋅ ( 2 x ) = 200 x ( x 2 + 1 ) 99 \frac{d}{dx}h(x) = \frac{d}{dx}(f(g(x))) = \frac{d}{d(x^2+1)}(x^2+1)^{100} \cdot \frac{d}{dx}(x^2+1) = 100(x^2+1)^{99}\cdot (2x) = 200x(x^2+1)^{99} d x d h ( x ) = d x d ( f ( g ( x ) ) ) = d ( x 2 + 1 ) d ( x 2 + 1 ) 1 0 0 ⋅ d x d ( x 2 + 1 ) = 1 0 0 ( x 2 + 1 ) 9 9 ⋅ ( 2 x ) = 2 0 0 x ( x 2 + 1 ) 9 9
h ( x ) = s i n x 2 h(x) = sinx^2 h ( x ) = s i n x 2 Find h ′ ( x ) h'(x) h ′ ( x ) k ( x ) = s i n 2 x k(x) = sin^2x k ( x ) = s i n 2 x Find k ′ ( x ) k'(x) k ′ ( x )
Let f ( x ) = x 2 , g ( x ) = s i n x f(x) = x^2, \; g(x) = sinx f ( x ) = x 2 , g ( x ) = s i n x ⇒ k ( x ) = f ( g ( x ) ) \Rightarrow k(x) = f(g(x)) ⇒ k ( x ) = f ( g ( x ) ) d d x k ( x ) = d d x f ( g ( x ) ) = d f ( g ( x ) ) d g ( x ) ⋅ d g ( x ) d x = d d s i n x ( s i n x ) 2 ⋅ d d x ( s i n x ) = 2 ( s i n x ) ( c o s x ) \frac{d}{dx}k(x) = \frac{d}{dx}f(g(x)) = \frac{df(g(x))}{dg(x)}\cdot \frac{dg(x)}{dx} = \frac{d}{dsinx}(sinx)^2 \cdot \frac{d}{dx}(sinx) = 2(sinx)(cosx) d x d k ( x ) = d x d f ( g ( x ) ) = d g ( x ) d f ( g ( x ) ) ⋅ d x d g ( x ) = d s i n x d ( s i n x ) 2 ⋅ d x d ( s i n x ) = 2 ( s i n x ) ( c o s x )
Let f ( x ) = s i n x , g ( x ) = x 2 f(x) = sinx, \; g(x) = x^2 f ( x ) = s i n x , g ( x ) = x 2 ⇒ h ( x ) = f ( g ( x ) ) \Rightarrow h(x) = f(g(x)) ⇒ h ( x ) = f ( g ( x ) ) d d x h ( x ) = d d x f ( g ( x ) ) = d f ( g ( x ) ) d g ( x ) ⋅ d g ( x ) d x = d d x 2 s i n ( x 2 ) ⋅ d d x ( x 2 ) = c o s ( x 2 ) ⋅ 2 x = 2 x c o s x 2 \frac{d}{dx}h(x) = \frac{d}{dx}f(g(x)) = \frac{df(g(x))}{dg(x)}\cdot \frac{dg(x)}{dx} = \frac{d}{dx^2}sin(x^2) \cdot \frac{d}{dx}(x^2) = cos(x^2)\cdot 2x = 2xcosx^2 d x d h ( x ) = d x d f ( g ( x ) ) = d g ( x ) d f ( g ( x ) ) ⋅ d x d g ( x ) = d x 2 d s i n ( x 2 ) ⋅ d x d ( x 2 ) = c o s ( x 2 ) ⋅ 2 x = 2 x c o s x 2
Find f ′ ( x ) f'(x) f ′ ( x )
f ( x ) = ( 3 x − 1 x 2 + 3 ) 2 f(x) = \left ( \frac{3x-1}{x^2+3} \right )^2 f ( x ) = ( x 2 + 3 3 x − 1 ) 2 f ( x ) = t a n ( x 2 − 1 ) 2 f(x) = tan(x^2-1)^2 f ( x ) = t a n ( x 2 − 1 ) 2 f ( x ) = s i n ( x 2 + 2 x ) f(x) = sin(x^2+2x) f ( x ) = s i n ( x 2 + 2 x ) f ( x ) = { x 2 s i n 1 x x ≠ 0 0 x = 0 f(x) = \left\{\begin{matrix} x^2sin\frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{matrix}\right. f ( x ) = { x 2 s i n x 1 0 x = 0 x = 0 f ( x ) = e s e c 2 x f(x) = e^{sec^2x} f ( x ) = e s e c 2 x Let h ( x ) = x 2 k ( x ) = 3 x − 1 x 2 + 3 ⇒ f ( x ) = h ( k ( x ) ) h(x) = x^2 k(x) = \frac{3x-1}{x^2+3} \Rightarrow f(x) = h(k(x)) h ( x ) = x 2 k ( x ) = x 2 + 3 3 x − 1 ⇒ f ( x ) = h ( k ( x ) ) d d x f ( x ) = d d x h ( k ( x ) ) = d d ( 3 x − 1 x 2 + 3 ) ( 3 x − 1 x + 3 ) 2 ⋅ d d x ( 3 x − 1 x 2 + 3 ) = 2 ( 3 x − 1 x 2 + 3 ) ⋅ 3 ( x 2 + 3 ) − ( 3 x − 1 ) ⋅ 2 x ( x 2 + 3 ) 2 = 2 ( 3 x − 1 x 2 + 3 ) ⋅ − 3 x 2 + 2 x + 9 ( x 2 + 3 ) 2 \frac{d}{dx}f(x) = \frac{d}{dx}h(k(x)) = \frac{d}{d(\frac{3x-1}{x^2+3})}\left ( \frac{3x-1}{x+3} \right )^2 \cdot \frac{d}{dx}\left ( \frac{3x-1}{x^2+3} \right ) = 2(\frac{3x-1}{x^2+3}) \cdot \frac{3(x^2+3)-(3x-1)\cdot 2x}{(x^2+3)^2} = 2(\frac{3x-1}{x^2+3}) \cdot \frac{-3x^2+2x+9}{(x^2+3)^2} d x d f ( x ) = d x d h ( k ( x ) ) = d ( x 2 + 3 3 x − 1 ) d ( x + 3 3 x − 1 ) 2 ⋅ d x d ( x 2 + 3 3 x − 1 ) = 2 ( x 2 + 3 3 x − 1 ) ⋅ ( x 2 + 3 ) 2 3 ( x 2 + 3 ) − ( 3 x − 1 ) ⋅ 2 x = 2 ( x 2 + 3 3 x − 1 ) ⋅ ( x 2 + 3 ) 2 − 3 x 2 + 2 x + 9
Let h ( x ) = t a n x , k ( x ) = x 2 , r ( x ) = x 2 − 1 ⇒ f ( x ) = ( h ∘ k ∘ r ) ( x ) = h ( k ( r ( x ) ) ) h(x) = tanx, k(x) = x^2, r(x) = x^2-1 \Rightarrow f(x) = (h\circ k \circ r)(x) = h(k(r(x))) h ( x ) = t a n x , k ( x ) = x 2 , r ( x ) = x 2 − 1 ⇒ f ( x ) = ( h ∘ k ∘ r ) ( x ) = h ( k ( r ( x ) ) ) d d x f ( x ) = d d x h ( k ( r ( x ) ) ) = d h ( k ( r ( x ) ) ) h ( r ( x ) ) ⋅ d k ( r ( x ) ) d r ( x ) ⋅ d r ( x ) d x = d d ( x 2 − 1 ) 2 t a n ( x 2 − 1 ) 2 ⋅ d d ( x 2 − 1 ) ( x 2 − 1 ) 2 ⋅ d d x ( x 2 − 1 ) = s e c 2 ( x 2 − 1 ) 2 ⋅ 2 ( x 2 − 1 ) ⋅ 2 x = 4 x ( x 2 − 1 ) s e c 2 ( x 2 − 1 ) 2 \frac{d}{dx}f(x) = \frac{d}{dx}h(k(r(x))) = \frac{dh(k(r(x)))}{h(r(x))}\cdot \frac{dk(r(x))}{dr(x)}\cdot \frac{dr(x)}{dx} = \frac{d}{d(x^2-1)^2}tan(x^2-1)^2 \cdot \frac{d}{d(x^2-1)}(x^2-1)^2\cdot\frac{d}{dx}(x^2-1) = sec^2(x^2-1)^2\cdot 2(x^2-1) \cdot 2x = 4x(x^2-1)sec^2(x^2-1)^2 d x d f ( x ) = d x d h ( k ( r ( x ) ) ) = h ( r ( x ) ) d h ( k ( r ( x ) ) ) ⋅ d r ( x ) d k ( r ( x ) ) ⋅ d x d r ( x ) = d ( x 2 − 1 ) 2 d t a n ( x 2 − 1 ) 2 ⋅ d ( x 2 − 1 ) d ( x 2 − 1 ) 2 ⋅ d x d ( x 2 − 1 ) = s e c 2 ( x 2 − 1 ) 2 ⋅ 2 ( x 2 − 1 ) ⋅ 2 x = 4 x ( x 2 − 1 ) s e c 2 ( x 2 − 1 ) 2
f ′ ( x ) = c o s ( x 2 + 2 x ) ⋅ d d x ( x 2 + 2 x ) = ( 2 x + 2 ) c o s ( x 2 + 2 x ) f'(x) = cos(x^2+2x)\cdot \frac{d}{dx}(x^2+2x) = (2x+2)cos(x^2+2x) f ′ ( x ) = c o s ( x 2 + 2 x ) ⋅ d x d ( x 2 + 2 x ) = ( 2 x + 2 ) c o s ( x 2 + 2 x )
If x ≠ 0 x \neq 0 x = 0 , d d x f ( x ) = d d x ( x 2 s i n 1 x ) = 2 x s i n 1 x + x 2 d d x s i n 1 x = 2 x s i n 1 x + x 2 c o s 1 x ⋅ d d x ( x − 1 ) = 2 x s i n 1 x − c o s 1 x \frac{d}{dx}f(x)= \frac{d}{dx}(x^2sin\frac{1}{x}) = 2xsin\frac{1}{x}+x^2\frac{d}{dx}sin\frac{1}{x} = 2xsin\frac{1}{x}+x^2cos\frac{1}{x}\cdot \frac{d}{dx}(x^{-1}) = 2xsin\frac{1}{x} - cos\frac{1}{x} d x d f ( x ) = d x d ( x 2 s i n x 1 ) = 2 x s i n x 1 + x 2 d x d s i n x 1 = 2 x s i n x 1 + x 2 c o s x 1 ⋅ d x d ( x − 1 ) = 2 x s i n x 1 − c o s x 1 . If x = 0 x =0 x = 0 , then lim h → 0 f ( 0 + h ) − f ( 0 ) h = lim h → 0 s i n 1 h 1 h = 0 \lim_{h \to 0}\frac{f(0+h)-f(0)}{h} = \lim_{h \to 0}\frac{sin\frac{1}{h}}{\frac{1}{h}} = 0 lim h → 0 h f ( 0 + h ) − f ( 0 ) = lim h → 0 h 1 s i n h 1 = 0
∴ f ′ ( x ) = { 2 x s i n 1 x − c o s 1 x x ≠ 0 0 x = 0 \therefore f'(x) = \left\{\begin{matrix} 2xsin\frac{1}{x} - cos\frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{matrix}\right. ∴ f ′ ( x ) = { 2 x s i n x 1 − c o s x 1 0 x = 0 x = 0
Let f 1 ( x ) = e x , f 2 ( x ) = x 2 , f 3 ( x ) = s e c x f_1(x) = e^x,f_2(x) = x^2,f_3(x) = secx f 1 ( x ) = e x , f 2 ( x ) = x 2 , f 3 ( x ) = s e c x ⇒ f ( x ) = f 1 ( f 2 ( f 3 ( x ) ) ) \Rightarrow f(x) = f_1(f_2(f_3(x))) ⇒ f ( x ) = f 1 ( f 2 ( f 3 ( x ) ) ) f ′ ( x ) = e s e c 2 x ⋅ 2 ( s e c x ) ⋅ d d x ( s e c x ) = 2 t a n x ⋅ s e c 2 x ⋅ e s e c 2 x f'(x) = e^{sec^2x}\cdot 2(secx) \cdot \frac{d}{dx}(secx)= 2tanx \cdot sec^2x \cdot e^{sec^2x} f ′ ( x ) = e s e c 2 x ⋅ 2 ( s e c x ) ⋅ d x d ( s e c x ) = 2 t a n x ⋅ s e c 2 x ⋅ e s e c 2 x
# Implicit DifferentiationSome functions are defined implicitly by relation between x and y. Ex. x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1 ,x 3 + y 3 = 6 x y x^3+y^3 = 6xy x 3 + y 3 = 6 x y
此時,有兩種方式計算d y d x \frac{dy}{dx} d x d y :(以x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1 為例)
將y y y 表示成f ( x ) f(x) f ( x ) 的形式再微分y = f 1 ( x ) = 1 − x 2 ⇒ d y d x = d d x f 1 ( x ) = − x 1 − x 2 y = f_1(x) = \sqrt{1-x^2} \Rightarrow \frac{dy}{dx} = \frac{d}{dx}f_1(x) = \frac{-x}{\sqrt{1-x^2}} y = f 1 ( x ) = 1 − x 2 ⇒ d x d y = d x d f 1 ( x ) = 1 − x 2 − x y = f 2 ( x ) = − 1 − x 2 ⇒ d y d x = d d x f 2 ( x ) = x 1 − x 2 y = f_2(x) = -\sqrt{1-x^2} \Rightarrow \frac{dy}{dx} = \frac{d}{dx}f_2(x) = \frac{x}{\sqrt{1-x^2}} y = f 2 ( x ) = − 1 − x 2 ⇒ d x d y = d x d f 2 ( x ) = 1 − x 2 x 降微分: differentiate both sides of the equation with respect to x x x to derive an equation for d y d x \frac{dy}{dx} d x d y d d x ( x 2 + y 2 ) = d d x ( 1 ) ⇒ 2 x + 2 y ⋅ d y d x = 0 ∴ d y d x = − x y \frac{d}{dx}(x^2+y^2) = \frac{d}{dx}(1)\Rightarrow 2x+2y \cdot \frac{dy}{dx} = 0 \therefore \frac{dy}{dx} = -\frac{x}{y} d x d ( x 2 + y 2 ) = d x d ( 1 ) ⇒ 2 x + 2 y ⋅ d x d y = 0 ∴ d x d y = − y x if y ≠ 0 y \neq 0 y = 0 x 2 + y 2 = 1 x^2+y^2 = 1 x 2 + y 2 = 1 ( a ) ( 1 2 , 3 2 ) (a) (\frac{1}{2},\frac{\sqrt{3}}{2}) ( a ) ( 2 1 , 2 3 ) ( b ) ( − 1 2 , − 1 2 ) (b) (-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}) ( b ) ( − 2 1 , − 2 1 ) 求 tangent line.
a: d y d x ∣ x = 1 2 = − x 1 − x 2 1 2 = − 1 3 ∴ y − 3 2 = − 1 3 ( x − 1 2 ) \frac{dy}{dx}|_{x=\frac{1}{2}} = \frac{-x}{\sqrt{1-x^2}}_{\frac{1}{2}} = \frac{-1}{\sqrt{3}} \therefore y-\frac{\sqrt{3}}{2} = -\frac{1}{\sqrt{3}}(x-\frac{1}{2}) d x d y ∣ x = 2 1 = 1 − x 2 − x 2 1 = 3 − 1 ∴ y − 2 3 = − 3 1 ( x − 2 1 ) b: d y d x ∣ x = − 1 2 = − x 1 − x 2 x = − 1 2 = − 1 ∴ y + 1 2 = − ( x + 1 2 ) \frac{dy}{dx}|_{x=-\frac{1}{\sqrt{2}}} = \frac{-x}{\sqrt{1-x^2}}_{x=-\frac{1}{\sqrt{2}}} = -1 \therefore y+\frac{1}{\sqrt{2}} = -(x+\frac{1}{\sqrt{2}}) d x d y ∣ x = − 2 1 = 1 − x 2 − x x = − 2 1 = − 1 ∴ y + 2 1 = − ( x + 2 1 ) a: d y d x ∣ ( 1 2 , 3 2 ) = − 1 2 3 2 = − 1 3 \frac{dy}{dx}|_{(\frac{1}{2},\frac{\sqrt{3}}{2})} = \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{-1}{\sqrt{3}} d x d y ∣ ( 2 1 , 2 3 ) = 2 3 − 2 1 = 3 − 1 b: d y d x ∣ ( − 1 2 , − 1 2 ) = − − 1 2 − 1 2 = − 1 \frac{dy}{dx}|_{(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})} = -\frac{-\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} = -1 d x d y ∣ ( − 2 1 , − 2 1 ) = − − 2 1 − 2 1 = − 1 x 3 + y 3 = 6 x y x^3+y^3 = 6xy x 3 + y 3 = 6 x y Find d y d x \frac{dy}{dx} d x d y
d d x ( x 3 + y 3 ) = d d x ( 6 x y ) \frac{d}{dx}(x^3+y^3) = \frac{d}{dx}(6xy) d x d ( x 3 + y 3 ) = d x d ( 6 x y ) ⇒ 3 x 2 + 3 y 2 d y d x = 6 ( y + x ⋅ d y d x ) \Rightarrow 3x^2+3y^2\frac{dy}{dx} = 6(y+x\cdot \frac{dy}{dx}) ⇒ 3 x 2 + 3 y 2 d x d y = 6 ( y + x ⋅ d x d y ) ⇒ ( 3 y 2 − 6 x ) d y d x = 6 y − 3 x 2 \Rightarrow (3y^2-6x)\frac{dy}{dx} = 6y-3x^2 ⇒ ( 3 y 2 − 6 x ) d x d y = 6 y − 3 x 2 ⇒ d y d x = 6 y − 3 x 2 3 y 2 − 6 x \Rightarrow \frac{dy}{dx} = \frac{6y-3x^2}{3y^2-6x} ⇒ d x d y = 3 y 2 − 6 x 6 y − 3 x 2 if 3 y 2 − 6 x ≠ 0 3y^2-6x \neq 0 3 y 2 − 6 x = 0
s i n ( x + y ) = y 2 c o s x sin(x+y) = y^2cosx s i n ( x + y ) = y 2 c o s x Find y ′ y' y ′
d d x ( s i n ) = d d x ( 6 x y ) \frac{d}{dx}(sin) = \frac{d}{dx}(6xy) d x d ( s i n ) = d x d ( 6 x y ) ⇒ 3 x 2 + 3 y 2 d y d x = 6 ( y + x ⋅ d y d x ) \Rightarrow 3x^2+3y^2\frac{dy}{dx} = 6(y+x\cdot \frac{dy}{dx}) ⇒ 3 x 2 + 3 y 2 d x d y = 6 ( y + x ⋅ d x d y ) ⇒ ( 3 y 2 − 6 x ) d y d x = 6 y − 3 x 2 \Rightarrow (3y^2-6x)\frac{dy}{dx} = 6y-3x^2 ⇒ ( 3 y 2 − 6 x ) d x d y = 6 y − 3 x 2 ⇒ d y d x = 6 y − 3 x 2 3 y 2 − 6 x \Rightarrow \frac{dy}{dx} = \frac{6y-3x^2}{3y^2-6x} ⇒ d x d y = 3 y 2 − 6 x 6 y − 3 x 2 if 3 y 2 − 6 x ≠ 0 3y^2-6x \neq 0 3 y 2 − 6 x = 0
s i n ( x + y ) = y 2 c o s x sin(x+y) = y^2cosx s i n ( x + y ) = y 2 c o s x .Find y ′ y' y ′
d d x s i n ( x + y ) = d d x y 2 c o s x \frac{d}{dx}sin(x+y) = \frac{d}{dx}y^2cosx d x d s i n ( x + y ) = d x d y 2 c o s x
⇒ c o s ( x + y ) = d d x ( x + y ) = 2 y y ′ c o s x + y 2 ( − s i n x ) \Rightarrow cos(x+y) = \frac{d}{dx}(x+y) = 2yy'cosx + y^2(-sinx) ⇒ c o s ( x + y ) = d x d ( x + y ) = 2 y y ′ c o s x + y 2 ( − s i n x ) ⇒ c o s ( x + y ) + y ′ c o s ( x + y ) = 2 y y ′ c o s x − y 2 s i n x \Rightarrow cos(x+y) + y'cos(x+y) = 2yy'cosx-y^2sinx ⇒ c o s ( x + y ) + y ′ c o s ( x + y ) = 2 y y ′ c o s x − y 2 s i n x ⇒ y ′ = y 2 s i n x + c o s ( x + y ) 2 y c o s x − c o s ( x + y ) \Rightarrow y' = \frac{y^2sinx+cos(x+y)}{2ycosx-cos(x+y)} ⇒ y ′ = 2 y c o s x − c o s ( x + y ) y 2 s i n x + c o s ( x + y ) if 2 y c o s x − c o s ( x + y ) ≠ 0 2ycosx-cos(x+y)\neq 0 2 y c o s x − c o s ( x + y ) = 0
# Reference蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109