• Rule of Differentiation
  • Chain Rule
  • Implicit Differentiation

# Rules of Differentiation

functionsderivativesfunctionsderivativesfunctionsderivatives
fg(x)fg(x)f(x)g(x)+f(x)g(x)f'(x)g(x)+f(x)g'(x)sinxsinxcosxcosxsecxsecxtanxsecxtanxsecx
fg(x)\frac{f}{g}(x)f(x)g(x)+f(x)g(x)(g(x))2.\frac{f'(x)g(x) + f(x)g'(x)}{(g(x))^2}.cosxcosxsinx-sinxcscxcscxcotxcscx-cotxcscx
exe^xexe^xtanxtanxsec2xsec^2xcotxcotxcsc2x-csc^2x

Find f(x)f'(x)

  1. f(x)=1x2+x23f(x) = \frac{1}{x^2}+\sqrt[3]{x^2}.
  2. f(x)=ex+x213exf(x) = \frac{e^x+x^2}{1-3e^x}.
  3. f(x)=x3sinxf(x) = x^3sinx.
  4. f(x)=x2+x2x3+6f(x) = \frac{x^2+x-2}{x^3+6}.
  5. f(x)=xg(x)f(x) = \sqrt{x}g(x),where g(4)=2,g(4)=3g(4) = 2,g'(4) = 3. find f(4)f'(4)

f(x)=x2+x23f(x) = x^{-2}+x^{\frac{2}{3}},f(x)=2x3+23x13f(x) = -2x^{-3}+\frac{2}{3}x^{-\frac{1}{3}}

f(x)=(ex+2x)(13ex)(ex+x2)(3ex)(13ex)2=(3x26x+1)ex+2x(13ex)2f(x) = \frac{(e^x+2x)(1-3e^x)-(e^x+x^2)(-3e^x)}{(1-3e^x)^2} = \frac{(3x^2-6x+1)e^x+2x}{(1-3e^x)^2}

f(x)=x3sinxf(x) = x^3sinx, f(x)=3x2sinx+x3cosxf'(x) = 3x^2sinx+x^3cosx

f(x)=x2+x2x3+6f(x) = \frac{x^2+x-2}{x^3+6}, f(x)=(2x+1)(x3+6)(x2+x2)(3x2)(x3+6)2=x42x3+6x2+12x+6(x3+6)2f'(x) = \frac{(2x+1)(x^3+6)-(x^2+x-2)(3x^2)}{(x^3+6)^2}= \frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}

f(x)=xg(x)f(x)=(ddxx12)g(x)+x12(ddxg(x))=12xg(x)+xg(x)\because f(x) = \sqrt{x}g(x) \therefore f'(x) = (\frac{d}{dx}x^{\frac{1}{2}})g(x) + x^{\frac{1}{2}}(\frac{d}{dx}g(x)) = \frac{-1}{2\sqrt{x}}\cdot g(x) + \sqrt{x} \cdot g'(x)
f(4)=142+23=132\Rightarrow f'(4) = \frac{1}{4}\cdot 2 + 2 \cdot 3 = \frac{13}{2}

# Chain Rule

If y=f(u)y=f(u), u=g(x)u=g(x) are differentiable function then dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.

If gg is differentiable at xx, and ff is differentiable at g(x)g(x) then
ddx(fg)(x)=df(g(x))dg(x)dg(x)dx=f(g(x))g(x)\frac{d}{dx}(f \circ g)(x) = \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx} = f'(g(x)) \cdot g'(x)

h(x)=(x2+1)100h(x) = (x^2+1)^{100} Find h(x)h'(x)

Let f(x)=x100,g(x)=x2+1f(x) = x^{100}, \; g(x) = x^2+1
h(x)=(fg)(x)=f(g(x))\Rightarrow h(x) = (f\circ g)(x) = f(g(x))
ddxh(x)=ddx(f(g(x)))=dd(x2+1)(x2+1)100ddx(x2+1)=100(x2+1)99(2x)=200x(x2+1)99\frac{d}{dx}h(x) = \frac{d}{dx}(f(g(x))) = \frac{d}{d(x^2+1)}(x^2+1)^{100} \cdot \frac{d}{dx}(x^2+1) = 100(x^2+1)^{99}\cdot (2x) = 200x(x^2+1)^{99}

h(x)=sinx2h(x) = sinx^2 Find h(x)h'(x)
k(x)=sin2xk(x) = sin^2x Find k(x)k'(x)

Let f(x)=x2,g(x)=sinxf(x) = x^2, \; g(x) = sinx
k(x)=f(g(x))\Rightarrow k(x) = f(g(x))
ddxk(x)=ddxf(g(x))=df(g(x))dg(x)dg(x)dx=ddsinx(sinx)2ddx(sinx)=2(sinx)(cosx)\frac{d}{dx}k(x) = \frac{d}{dx}f(g(x)) = \frac{df(g(x))}{dg(x)}\cdot \frac{dg(x)}{dx} = \frac{d}{dsinx}(sinx)^2 \cdot \frac{d}{dx}(sinx) = 2(sinx)(cosx)

Let f(x)=sinx,g(x)=x2f(x) = sinx, \; g(x) = x^2
h(x)=f(g(x))\Rightarrow h(x) = f(g(x))
ddxh(x)=ddxf(g(x))=df(g(x))dg(x)dg(x)dx=ddx2sin(x2)ddx(x2)=cos(x2)2x=2xcosx2\frac{d}{dx}h(x) = \frac{d}{dx}f(g(x)) = \frac{df(g(x))}{dg(x)}\cdot \frac{dg(x)}{dx} = \frac{d}{dx^2}sin(x^2) \cdot \frac{d}{dx}(x^2) = cos(x^2)\cdot 2x = 2xcosx^2

Find f(x)f'(x)

  1. f(x)=(3x1x2+3)2f(x) = \left ( \frac{3x-1}{x^2+3} \right )^2
  2. f(x)=tan(x21)2f(x) = tan(x^2-1)^2
  3. f(x)=sin(x2+2x)f(x) = sin(x^2+2x)
  4. f(x)={x2sin1xx00x=0f(x) = \left\{\begin{matrix} x^2sin\frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{matrix}\right.
  5. f(x)=esec2xf(x) = e^{sec^2x}

Let h(x)=x2k(x)=3x1x2+3f(x)=h(k(x))h(x) = x^2 k(x) = \frac{3x-1}{x^2+3} \Rightarrow f(x) = h(k(x))
ddxf(x)=ddxh(k(x))=dd(3x1x2+3)(3x1x+3)2ddx(3x1x2+3)=2(3x1x2+3)3(x2+3)(3x1)2x(x2+3)2=2(3x1x2+3)3x2+2x+9(x2+3)2\frac{d}{dx}f(x) = \frac{d}{dx}h(k(x)) = \frac{d}{d(\frac{3x-1}{x^2+3})}\left ( \frac{3x-1}{x+3} \right )^2 \cdot \frac{d}{dx}\left ( \frac{3x-1}{x^2+3} \right ) = 2(\frac{3x-1}{x^2+3}) \cdot \frac{3(x^2+3)-(3x-1)\cdot 2x}{(x^2+3)^2} = 2(\frac{3x-1}{x^2+3}) \cdot \frac{-3x^2+2x+9}{(x^2+3)^2}

Let h(x)=tanx,k(x)=x2,r(x)=x21f(x)=(hkr)(x)=h(k(r(x)))h(x) = tanx, k(x) = x^2, r(x) = x^2-1 \Rightarrow f(x) = (h\circ k \circ r)(x) = h(k(r(x)))
ddxf(x)=ddxh(k(r(x)))=dh(k(r(x)))h(r(x))dk(r(x))dr(x)dr(x)dx=dd(x21)2tan(x21)2dd(x21)(x21)2ddx(x21)=sec2(x21)22(x21)2x=4x(x21)sec2(x21)2\frac{d}{dx}f(x) = \frac{d}{dx}h(k(r(x))) = \frac{dh(k(r(x)))}{h(r(x))}\cdot \frac{dk(r(x))}{dr(x)}\cdot \frac{dr(x)}{dx} = \frac{d}{d(x^2-1)^2}tan(x^2-1)^2 \cdot \frac{d}{d(x^2-1)}(x^2-1)^2\cdot\frac{d}{dx}(x^2-1) = sec^2(x^2-1)^2\cdot 2(x^2-1) \cdot 2x = 4x(x^2-1)sec^2(x^2-1)^2

f(x)=cos(x2+2x)ddx(x2+2x)=(2x+2)cos(x2+2x)f'(x) = cos(x^2+2x)\cdot \frac{d}{dx}(x^2+2x) = (2x+2)cos(x^2+2x)

If x0x \neq 0, ddxf(x)=ddx(x2sin1x)=2xsin1x+x2ddxsin1x=2xsin1x+x2cos1xddx(x1)=2xsin1xcos1x\frac{d}{dx}f(x)= \frac{d}{dx}(x^2sin\frac{1}{x}) = 2xsin\frac{1}{x}+x^2\frac{d}{dx}sin\frac{1}{x} = 2xsin\frac{1}{x}+x^2cos\frac{1}{x}\cdot \frac{d}{dx}(x^{-1}) = 2xsin\frac{1}{x} - cos\frac{1}{x}.
If x=0x =0, then limh0f(0+h)f(0)h=limh0sin1h1h=0\lim_{h \to 0}\frac{f(0+h)-f(0)}{h} = \lim_{h \to 0}\frac{sin\frac{1}{h}}{\frac{1}{h}} = 0

f(x)={2xsin1xcos1xx00x=0\therefore f'(x) = \left\{\begin{matrix} 2xsin\frac{1}{x} - cos\frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{matrix}\right.

Let f1(x)=ex,f2(x)=x2,f3(x)=secxf_1(x) = e^x,f_2(x) = x^2,f_3(x) = secx
f(x)=f1(f2(f3(x)))\Rightarrow f(x) = f_1(f_2(f_3(x)))
f(x)=esec2x2(secx)ddx(secx)=2tanxsec2xesec2xf'(x) = e^{sec^2x}\cdot 2(secx) \cdot \frac{d}{dx}(secx)= 2tanx \cdot sec^2x \cdot e^{sec^2x}

# Implicit Differentiation

Some functions are defined implicitly by relation between x and y.
Ex. x2+y2=1x^2+y^2=1,x3+y3=6xyx^3+y^3 = 6xy

此時,有兩種方式計算dydx\frac{dy}{dx}:(以x2+y2=1x^2+y^2=1 為例)

  1. yy 表示成f(x)f(x) 的形式再微分
    y=f1(x)=1x2dydx=ddxf1(x)=x1x2y = f_1(x) = \sqrt{1-x^2} \Rightarrow \frac{dy}{dx} = \frac{d}{dx}f_1(x) = \frac{-x}{\sqrt{1-x^2}}
    y=f2(x)=1x2dydx=ddxf2(x)=x1x2y = f_2(x) = -\sqrt{1-x^2} \Rightarrow \frac{dy}{dx} = \frac{d}{dx}f_2(x) = \frac{x}{\sqrt{1-x^2}}
  2. 降微分: differentiate both sides of the equation with respect to xx to derive an equation for dydx\frac{dy}{dx}
    ddx(x2+y2)=ddx(1)2x+2ydydx=0dydx=xy\frac{d}{dx}(x^2+y^2) = \frac{d}{dx}(1)\Rightarrow 2x+2y \cdot \frac{dy}{dx} = 0 \therefore \frac{dy}{dx} = -\frac{x}{y} if y0y \neq 0

x2+y2=1x^2+y^2 = 1 (a)(12,32)(a) (\frac{1}{2},\frac{\sqrt{3}}{2}) (b)(12,12)(b) (-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}) 求 tangent line.

  • a: dydxx=12=x1x212=13y32=13(x12)\frac{dy}{dx}|_{x=\frac{1}{2}} = \frac{-x}{\sqrt{1-x^2}}_{\frac{1}{2}} = \frac{-1}{\sqrt{3}} \therefore y-\frac{\sqrt{3}}{2} = -\frac{1}{\sqrt{3}}(x-\frac{1}{2})
  • b: dydxx=12=x1x2x=12=1y+12=(x+12)\frac{dy}{dx}|_{x=-\frac{1}{\sqrt{2}}} = \frac{-x}{\sqrt{1-x^2}}_{x=-\frac{1}{\sqrt{2}}} = -1 \therefore y+\frac{1}{\sqrt{2}} = -(x+\frac{1}{\sqrt{2}})
  • a: dydx(12,32)=1232=13\frac{dy}{dx}|_{(\frac{1}{2},\frac{\sqrt{3}}{2})} = \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{-1}{\sqrt{3}}
  • b: dydx(12,12)=1212=1\frac{dy}{dx}|_{(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})} = -\frac{-\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} = -1

x3+y3=6xyx^3+y^3 = 6xy Find dydx\frac{dy}{dx}

ddx(x3+y3)=ddx(6xy)\frac{d}{dx}(x^3+y^3) = \frac{d}{dx}(6xy)
3x2+3y2dydx=6(y+xdydx)\Rightarrow 3x^2+3y^2\frac{dy}{dx} = 6(y+x\cdot \frac{dy}{dx})
(3y26x)dydx=6y3x2\Rightarrow (3y^2-6x)\frac{dy}{dx} = 6y-3x^2
dydx=6y3x23y26x\Rightarrow \frac{dy}{dx} = \frac{6y-3x^2}{3y^2-6x}if 3y26x03y^2-6x \neq 0

sin(x+y)=y2cosxsin(x+y) = y^2cosx Find yy'

ddx(sin)=ddx(6xy)\frac{d}{dx}(sin) = \frac{d}{dx}(6xy)
3x2+3y2dydx=6(y+xdydx)\Rightarrow 3x^2+3y^2\frac{dy}{dx} = 6(y+x\cdot \frac{dy}{dx})
(3y26x)dydx=6y3x2\Rightarrow (3y^2-6x)\frac{dy}{dx} = 6y-3x^2
dydx=6y3x23y26x\Rightarrow \frac{dy}{dx} = \frac{6y-3x^2}{3y^2-6x}if 3y26x03y^2-6x \neq 0

sin(x+y)=y2cosxsin(x+y) = y^2cosx.Find yy'

ddxsin(x+y)=ddxy2cosx\frac{d}{dx}sin(x+y) = \frac{d}{dx}y^2cosx

cos(x+y)=ddx(x+y)=2yycosx+y2(sinx)\Rightarrow cos(x+y) = \frac{d}{dx}(x+y) = 2yy'cosx + y^2(-sinx)
cos(x+y)+ycos(x+y)=2yycosxy2sinx\Rightarrow cos(x+y) + y'cos(x+y) = 2yy'cosx-y^2sinx
y=y2sinx+cos(x+y)2ycosxcos(x+y)\Rightarrow y' = \frac{y^2sinx+cos(x+y)}{2ycosx-cos(x+y)} if 2ycosxcos(x+y)02ycosx-cos(x+y)\neq 0


# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay