• Rolle's Theorem and The Mean Value Thm
  • Indeterminate Forms and L'Hospital's Rule
  • Antiderivative

# Rolle's Theorem and The Mean Value Thm

# Rolle's Thm

Suppose ff satifies that

  1. f:[a,b]Rf:[a,b] \to \mathbb{R} is continuous.
  2. f:(a,b)Rf:(a,b) \to \mathbb{R} is differentiable.
  3. f(a)=f(b)f(a) = f(b)
    then c(a,b)\exists c \in (a,b) such that f(c)=0f'(c) = 0

# The Mean Value Thm

Suppose ff satifies that

  1. f:[a,b]Rf:[a,b] \to \mathbb{R} is continuous.
  2. f:(a,b)Rf:(a,b) \to \mathbb{R} is differentiable.
    then c(a,b)\exists c \in (a,b) such that f(c)=f(b)f(a)baf'(c) = \frac{f(b)-f(a)}{b-a}.

# Indeterminate Forms and L'Hospital's Rule

# Indeterminate Forms (不定型)

Consider limxaf(x)g(x)\lim_{x \to a}\frac{f(x)}{g(x)}:

  1. 若當xax \to a 時,同時有 f(x)0f(x) \to 0g(x)0g(x) \to 0
    limxaf(x)g(x)\lim_{x \to a}\frac{f(x)}{g(x)} 稱為00\frac{0}{0} 不定型
  2. 若當xax \to a 時,同時有 f(x)f(x) \to \inftyg(x)g(x) \to \infty
    limxaf(x)g(x)\lim_{x \to a}\frac{f(x)}{g(x)} 稱為\frac{\infty}{\infty} 不定型

# L'Hospital's Rule

Suppose ff and gg are differentiable and g(x)0g'(x) \neq 0 on (a,b)(a,b) containing cc.
Suppose that limxaf(x)=0\lim_{x \to a}f(x) = 0 and limxag(x)=0\lim_{x \to a}g(x) = 0 or limxaf(x)=±\lim_{x \to a}f(x) = \pm \infty and limxag(x)=±\lim_{x \to a}g(x) = \pm \infty
Then limxaf(x)g(x)=limxaf(x)g(x)\lim_{x\to a}\frac{f(x)}{g(x)} = \lim_{x\to a}\frac{f'(x)}{g'(x)} if the limit on the right hand side exists(or is ±\pm \infty)

# Antiderivative

# Define

A function FF is called an antiderivative of ff on an open interval II if F(x)=f(x)F'(x) = f(x) for all xIx \in I.

# Example

functionsantiderivativesfunctionsantiderivatives
cf(x)cf(x)cF(x)+kcF(x)+ksinxsinxcosx+k-cosx+k
f(x)+g(x)f(x)+g(x)F(x)+G(x)+kF(x)+G(x)+ksec2xsec^2xtanx+ktanx+k
xn(n1)x^n(n \neq -1)1n+1xn+1+k\frac{1}{n+1}x^{n+1}+ktanxsecxtanxsecxsecx+ksecx+k
1x\frac{1}{x}.lnx+kln\|x\|+k11x2\frac{1}{\sqrt{1-x^2}}.sin1x+ksin^{-1}x+k
exe^xex+ke^x+k11+x2\frac{1}{1+x^2}.tan1x+ktan^{-1}x+k
cosxcosxsinx+ksinx+k11x2\frac{-1}{\sqrt{1-x^2}}.cos1x+kcos^{-1}x+k

# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay