The Substitution Rule Integration By Parts Trigonometric Integrals # The Substitution Rule∫ ( 1 + x ) 5 d x \int (1+x)^5dx ∫ ( 1 + x ) 5 d x ∫ x 2 ( 1 + x 3 ) 5 d x \int x^2(1+x^3)^5dx ∫ x 2 ( 1 + x 3 ) 5 d x ∫ 2 x 1 + x 2 d x \int 2x \sqrt{1+x^2} \; dx ∫ 2 x 1 + x 2 d x ∫ 1 + 2 x d x \int \sqrt{1+2x} \; dx ∫ 1 + 2 x d x 方法一: Let u = 1 + x u = 1+x u = 1 + x , d u d x = d d x ( 1 + x ) ⇒ d u d x = 1 ⇒ d u = d x \frac{du}{dx} = \frac{d}{dx}(1+x) \Rightarrow \frac{du}{dx} = 1 \Rightarrow du = dx d x d u = d x d ( 1 + x ) ⇒ d x d u = 1 ⇒ d u = d x ∫ ( 1 + x ) 5 d x = ∫ u 5 d u = 1 6 u 6 + k = 1 6 ( 1 + x ) 6 + k \int (1+x)^5dx = \int u^5du = \frac{1}{6}u^6+k = \frac{1}{6}(1+x)^6+k ∫ ( 1 + x ) 5 d x = ∫ u 5 d u = 6 1 u 6 + k = 6 1 ( 1 + x ) 6 + k 方法二 (直接寫就好):∫ ( 1 + x ) 5 d x = ∫ ( 1 + x ) 5 d ( 1 + x ) = 1 6 ( 1 + x ) 6 + k \int (1+x)^5 \; dx = \int (1+x)^5 \; d(1+x) = \frac{1}{6}(1+x)^6+k ∫ ( 1 + x ) 5 d x = ∫ ( 1 + x ) 5 d ( 1 + x ) = 6 1 ( 1 + x ) 6 + k
方法一: Let u = 1 + x 3 u = 1+x^3 u = 1 + x 3 , d u d x = d d x ( 1 + x 3 ) ⇒ d u d x = 3 x 2 ⇒ d u = 3 x 2 d x \frac{du}{dx} = \frac{d}{dx}(1+x^3) \Rightarrow \frac{du}{dx} = 3x^2 \Rightarrow du = 3x^2dx d x d u = d x d ( 1 + x 3 ) ⇒ d x d u = 3 x 2 ⇒ d u = 3 x 2 d x ∫ ( 1 + x 3 ) 5 x 2 d x = ∫ 1 3 u 5 d u = 1 18 u 6 + k = 1 18 ( 1 + x ) 6 + k \int (1+x^3)^5x^2dx = \int \frac{1}{3} u^5du = \frac{1}{18}u^6+k = \frac{1}{18}(1+x)^6+k ∫ ( 1 + x 3 ) 5 x 2 d x = ∫ 3 1 u 5 d u = 1 8 1 u 6 + k = 1 8 1 ( 1 + x ) 6 + k 方法二 (直接寫就好):∫ ( 1 + x 3 ) 5 x 2 d x = ∫ 1 3 ( 1 + x 3 ) 5 d ( 1 + x 3 ) = 1 18 ( 1 + x ) 6 + k \int (1+x^3)^5x^2dx = \int \frac{1}{3}(1+x^3)^5 \; d(1+x^3) = \frac{1}{18}(1+x)^6+k ∫ ( 1 + x 3 ) 5 x 2 d x = ∫ 3 1 ( 1 + x 3 ) 5 d ( 1 + x 3 ) = 1 8 1 ( 1 + x ) 6 + k
∫ 2 x 1 + x 2 d x = ∫ ( 1 + x 2 ) 1 2 d ( 1 + x 2 ) = 2 3 ( 1 + x 2 ) 3 2 + k \int 2x \sqrt{1+x^2} \; dx = \int (1+x^2)^{\frac{1}{2}}d(1+x^2) = \frac{2}{3}(1+x^2)^{\frac{3}{2}}+k ∫ 2 x 1 + x 2 d x = ∫ ( 1 + x 2 ) 2 1 d ( 1 + x 2 ) = 3 2 ( 1 + x 2 ) 2 3 + k
∫ 1 + 2 x d x = ∫ ( 1 + 2 x ) 1 2 1 2 d ( 1 + 2 x ) = 1 3 ( 1 + 2 x ) 3 2 + k \int \sqrt{1+2x} \; dx = \int (1+2x)^{\frac{1}{2}}\frac{1}{2}d(1+2x) = \frac{1}{3}(1+2x)^{\frac{3}{2}}+k ∫ 1 + 2 x d x = ∫ ( 1 + 2 x ) 2 1 2 1 d ( 1 + 2 x ) = 3 1 ( 1 + 2 x ) 2 3 + k
Remark Let u = f ( x ) , d u d x = f ′ ( x ) ⇒ d u = f ′ ( x ) d x u = f(x), \frac{du}{dx} = f'(x) \Rightarrow du = f'(x)dx u = f ( x ) , d x d u = f ′ ( x ) ⇒ d u = f ′ ( x ) d x d ( f ( x ) + k ) = d ( f ( x ) ) = f ′ ( x ) d x d(f(x)+k) = d(f(x)) = f'(x)dx d ( f ( x ) + k ) = d ( f ( x ) ) = f ′ ( x ) d x ∫ 2 x d x \int 2^x \; dx ∫ 2 x d x ∫ e s i n x c o s x d x \int e^{sinx}cosx \; dx ∫ e s i n x c o s x d x 2 x = e l n 2 x = e x l n 2 . 2^x = e^{ln2^{x}} = e^{xln2}. 2 x = e l n 2 x = e x l n 2 . Let u = x l n 2 ⇒ d u = l n 2 d x u = xln2 \Rightarrow du = ln2dx u = x l n 2 ⇒ d u = l n 2 d x ∫ 2 x d x = ∫ e x l n 2 d x = 1 l n 2 ∫ e u d u = 1 l n 2 e u + k = 1 l n 2 e x l n 2 + k = 1 l n 2 2 x + k \int 2^x \; dx = \int e^{xln2}dx = \frac{1}{ln2}\int e^u du = \frac{1}{ln2}e^u+k=\frac{1}{ln2}e^{xln2}+k = \frac{1}{ln2}2^x+k ∫ 2 x d x = ∫ e x l n 2 d x = l n 2 1 ∫ e u d u = l n 2 1 e u + k = l n 2 1 e x l n 2 + k = l n 2 1 2 x + k
∫ e s i n x c o s x d x = ∫ e s i n x d ( s i n x ) = e s i n x + k \int e^{sinx}cosx \; dx = \int e^{sinx}d(sinx) = e^{sinx}+k ∫ e s i n x c o s x d x = ∫ e s i n x d ( s i n x ) = e s i n x + k
∫ x 5 1 + x 2 d x \int x^5\sqrt{1+x^2} dx ∫ x 5 1 + x 2 d x
Let u = 1 + x 2 u=1+x^2 u = 1 + x 2 , d u = 2 x d x du=2xdx d u = 2 x d x and x 2 = u − 1 x^2=u-1 x 2 = u − 1 ∫ x 5 1 + x 2 d x = ∫ u 1 2 x 4 ( 1 2 d u ) = 1 2 u 1 2 ( u − 1 ) 2 d u = 1 2 ∫ ( u 5 2 − 2 u 3 2 + u 1 2 ) d u = 1 2 ( 2 7 u 7 2 − 4 5 u 5 2 + 2 3 u 3 2 ) + k = 1 7 ( 1 + x ) 7 2 − 5 2 ( 1 + x 2 ) 2 5 + 1 3 ( 1 + x 2 ) 3 2 + k \int x^5\sqrt{1+x^2} dx = \int u^{\frac{1}{2}}x^4(\frac{1}{2}du)=\frac{1}{2}u^{\frac{1}{2}}(u-1)^2du = \frac{1}{2}\int (u^{\frac{5}{2}}-2u^{\frac{3}{2}}+u^{\frac{1}{2}})du = \frac{1}{2}(\frac{2}{7}u^{\frac{7}{2}}-\frac{4}{5}u^{\frac{5}{2}}+\frac{2}{3}u^{\frac{3}{2}})+k = \frac{1}{7}(1+x)^{\frac{7}{2}}-\frac{5}{2}(1+x^2)^{\frac{2}{5}}+\frac{1}{3}(1+x^2)^{\frac{3}{2}}+k ∫ x 5 1 + x 2 d x = ∫ u 2 1 x 4 ( 2 1 d u ) = 2 1 u 2 1 ( u − 1 ) 2 d u = 2 1 ∫ ( u 2 5 − 2 u 2 3 + u 2 1 ) d u = 2 1 ( 7 2 u 2 7 − 5 4 u 2 5 + 3 2 u 2 3 ) + k = 7 1 ( 1 + x ) 2 7 − 2 5 ( 1 + x 2 ) 5 2 + 3 1 ( 1 + x 2 ) 2 3 + k
# Integration By Partsd d x { f ( x ) g ( x ) } = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) ⇒ f ( x ) g ( x ) = ∫ f ′ ( x ) g ( x ) d x + ∫ f ( x ) g ′ ( x ) d x ⇒ ∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x \frac{d}{dx}\{f(x)g(x) \} = f'(x)g(x)+f(x)g'(x) \\ \Rightarrow f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx \\ \Rightarrow \int f(x)g'(x)dx = f(x)g(x)-\int f'(x)g(x)dx d x d { f ( x ) g ( x ) } = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) ⇒ f ( x ) g ( x ) = ∫ f ′ ( x ) g ( x ) d x + ∫ f ( x ) g ′ ( x ) d x ⇒ ∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x
可以簡寫成: ∫ u d v = u v − ∫ v d u \int u dv = uv- \int v du ∫ u d v = u v − ∫ v d u
∫ x s i n x d x \int xsinxdx ∫ x s i n x d x ∫ x 2 s i n x d x \int x^2sinxdx ∫ x 2 s i n x d x Let f ( x ) = x , g ′ ( x ) = s i n x ⇒ f ′ ( x ) = 1 g ( x ) = − c o s x ∫ x s i n x d x = − x c o s x + ∫ c o s x d x = − x c o s x + s i n x + k f(x) = x, \; g'(x) = sinx \\ \Rightarrow f'(x) = 1 \; g(x) = -cosx \\ \int xsinxdx = -xcosx+\int cosxdx = -xcosx + sinx + k f ( x ) = x , g ′ ( x ) = s i n x ⇒ f ′ ( x ) = 1 g ( x ) = − c o s x ∫ x s i n x d x = − x c o s x + ∫ c o s x d x = − x c o s x + s i n x + k
Let f ( x ) = x 2 , g ′ ( x ) = s i n x f(x) = x^2, \; g'(x) = sinx f ( x ) = x 2 , g ′ ( x ) = s i n x ⇒ f ′ ( x ) = 2 x g ( x ) = − c o s x \Rightarrow f'(x) = 2x \; g(x) = -cosx ⇒ f ′ ( x ) = 2 x g ( x ) = − c o s x ∫ x 2 s i n x d x = − x 2 c o s x + 2 ∫ x c o s x d x = − x 2 c o s x + 2 ( x s i n x − ∫ s i n x d x ) = − x 2 c o s x + 2 x s i n x + 2 c o s x + k \int x^2sinxdx = -x^2cosx+2\int xcosx dx = -x^2cosx+2(xsinx-\int sinx dx) = -x^2cosx +2xsinx+2cosx+k ∫ x 2 s i n x d x = − x 2 c o s x + 2 ∫ x c o s x d x = − x 2 c o s x + 2 ( x s i n x − ∫ s i n x d x ) = − x 2 c o s x + 2 x s i n x + 2 c o s x + k
∫ l n x d x \int lnx \, dx ∫ l n x d x ∫ x 2 l n x d x \int x^2lnx \, dx ∫ x 2 l n x d x Let f ( x ) = l n x , g ′ ( x ) = 1 f(x) = lnx, \; g'(x)=1 f ( x ) = l n x , g ′ ( x ) = 1 ⇒ f ′ ( x ) = 1 x , g ( x ) = x \Rightarrow f'(x) = \frac{1}{x}, \; g(x) = x ⇒ f ′ ( x ) = x 1 , g ( x ) = x ∫ l n x d x = x l n x − ∫ 1 x ⋅ x d x = x l n x − x + k \int lnx \, dx = xlnx - \int \frac{1}{x} \cdot x dx= xlnx - x +k ∫ l n x d x = x l n x − ∫ x 1 ⋅ x d x = x l n x − x + k
Let f ( x ) = l n x , g ′ ( x ) = x 2 f(x) = lnx, \; g'(x)=x^2 f ( x ) = l n x , g ′ ( x ) = x 2 ⇒ f ′ ( x ) = 1 x , g ( x ) = 1 3 x 3 \Rightarrow f'(x) = \frac{1}{x}, \; g(x) = \frac{1}{3}x^3 ⇒ f ′ ( x ) = x 1 , g ( x ) = 3 1 x 3 ∫ l n x d x = x l n x − ∫ 1 3 x 2 d x = x l n x − 1 9 x 3 + k \int lnx \, dx = xlnx - \int \frac{1}{3}x^2 dx= xlnx - \frac{1}{9}x^3 +k ∫ l n x d x = x l n x − ∫ 3 1 x 2 d x = x l n x − 9 1 x 3 + k
∫ t a n − 1 x d x \int tan^{-1}xdx ∫ t a n − 1 x d x ∫ s i n − 1 x d x \int sin^{-1}xdx ∫ s i n − 1 x d x Let f ( x ) = t a n − 1 x , g ′ ( x ) = 1 f(x) = tan^{-1}x, \; g'(x) = 1 f ( x ) = t a n − 1 x , g ′ ( x ) = 1 ⇒ f ′ ( x ) = 1 1 + x 2 , g ( x ) = x \Rightarrow f'(x) = \frac{1}{1+x^2}, \; g(x) = x ⇒ f ′ ( x ) = 1 + x 2 1 , g ( x ) = x ∫ t a n − 1 x d x = x t a n − 1 x − ∫ x 1 + x 2 d x = x t a n − 1 x − 1 2 ∫ 1 1 + x 2 d ( 1 + x 2 ) = x t a n − 1 x − 1 2 l n ( 1 + x 2 ) + k \int tan^{-1}xdx = xtan^{-1}x - \int \frac{x}{1+x^2}dx = xtan^{-1}x - \frac{1}{2}\int \frac{1}{1+x^2}d(1+x^2) = xtan^{-1}x - \frac{1}{2}ln(1+x^2)+k ∫ t a n − 1 x d x = x t a n − 1 x − ∫ 1 + x 2 x d x = x t a n − 1 x − 2 1 ∫ 1 + x 2 1 d ( 1 + x 2 ) = x t a n − 1 x − 2 1 l n ( 1 + x 2 ) + k
Let f ( x ) = s i n − 1 x d x g ′ ( x ) = 1 f(x) = sin^{-1}x dx \; g'(x) = 1 f ( x ) = s i n − 1 x d x g ′ ( x ) = 1 ⇒ f ′ ( x ) = 1 1 − x 2 g ( x ) = x \Rightarrow f'(x) = \frac{1}{\sqrt{1-x^2}} \; g(x) = x ⇒ f ′ ( x ) = 1 − x 2 1 g ( x ) = x ∫ s i n − 1 x d x = x s i n − 1 x − ∫ x 1 − x 2 d x = x s i n − 1 x + 1 2 ∫ 1 1 − x 2 d ( 1 − x 2 ) = x s i n − 1 x + 1 − x 2 + k \int sin^{-1}x dx = xsin^{-1}x - \int \frac{x}{\sqrt{1-x^2}}dx = xsin^{-1}x + \frac{1}{2}\int \frac{1}{\sqrt{1-x^2}}d(1-x^2) = xsin^{-1}x + \sqrt{1-x^2}+k ∫ s i n − 1 x d x = x s i n − 1 x − ∫ 1 − x 2 x d x = x s i n − 1 x + 2 1 ∫ 1 − x 2 1 d ( 1 − x 2 ) = x s i n − 1 x + 1 − x 2 + k
Remark 一般而言,為了方便計算:
∫ x n ( s i n x c o s x e x / e − x ) d x \int x^n\begin{pmatrix} sinx \\ cosx \\ e^x / e^{-x} \end{pmatrix}dx ∫ x n ⎝ ⎛ s i n x c o s x e x / e − x ⎠ ⎞ d x Let f ( x ) = x n , g ′ ( x ) = ( ) f(x) = x^n,g'(x)=() f ( x ) = x n , g ′ ( x ) = ( ) ∫ x n ( l n x s i n − 1 x t a n − 1 x ) d x \int x^n\begin{pmatrix} lnx \\ sin^{-1}x \\ tan^{-1}x \end{pmatrix}dx ∫ x n ⎝ ⎛ l n x s i n − 1 x t a n − 1 x ⎠ ⎞ d x Let f ( x ) = ( ) , g ′ ( x ) = x n f(x) = (),g'(x)=x^n f ( x ) = ( ) , g ′ ( x ) = x n # Trigonometric Functionss i n 2 x + c o s 2 x = 1 sin^2x+cos^2x=1 s i n 2 x + c o s 2 x = 1 t a n 2 x + 1 = s e c 2 x tan^2x + 1 = sec^2x t a n 2 x + 1 = s e c 2 x c o s 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x cos2x = 2cos^2x-1 = 1-2sin^2x c o s 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x ⇒ c o s 2 x = 1 + c o s 2 x 2 . \Rightarrow cos^2x = \frac{1+cos2x}{2}. ⇒ c o s 2 x = 2 1 + c o s 2 x . ⇒ s i n 2 x = 1 − c o s 2 x 2 . \Rightarrow sin^2x = \frac{1-cos2x}{2}. ⇒ s i n 2 x = 2 1 − c o s 2 x . s i n x c o s x = 1 2 s i n 2 x sinxcosx = \frac{1}{2}sin2x s i n x c o s x = 2 1 s i n 2 x # ∫sinⁿx dx∫ s i n 2 x d x = 1 2 ∫ ( 1 − c o s ( 2 x ) ) d x = 1 2 ( ∫ 1 d x − ∫ c o s ( 2 x ) d x ) = 1 2 ( x − 1 2 s i n ( 2 x ) ) + k = 1 2 x − 1 4 s i n ( 2 x ) + k \int sin^2x dx = \frac{1}{2} \int (1-cos(2x)) dx = \frac{1}{2} (\int 1 dx - \int cos(2x) dx ) = \frac{1}{2} ( x- \frac{1}{2} sin(2x))+k = \frac{1}{2}x - \frac{1}{4}sin(2x)+k ∫ s i n 2 x d x = 2 1 ∫ ( 1 − c o s ( 2 x ) ) d x = 2 1 ( ∫ 1 d x − ∫ c o s ( 2 x ) d x ) = 2 1 ( x − 2 1 s i n ( 2 x ) ) + k = 2 1 x − 4 1 s i n ( 2 x ) + k
∫ s i n 3 x d x = ∫ s i n 2 x ⋅ s i n x d x = − ∫ ( 1 − c o s 2 x ) d ( c o s x ) = − c o s x + 1 3 c o s 3 x + k \int sin^3x dx = \int sin^2x \cdot sinxdx = -\int (1-cos^2x)d(cosx) = -cosx + \frac{1}{3}cos^3x + k ∫ s i n 3 x d x = ∫ s i n 2 x ⋅ s i n x d x = − ∫ ( 1 − c o s 2 x ) d ( c o s x ) = − c o s x + 3 1 c o s 3 x + k
∫ s i n 4 x d x = ∫ ( 1 − c o s ( 2 x ) 2 ) 2 d x = 1 4 ∫ ( 1 − 2 c o s ( 2 x ) + c o s 2 ( 2 x ) ) d x = 1 4 ( x − s i n ( 2 x ) ) + ∫ 1 + c o s ( 4 x ) 8 d x = 3 8 x − 1 4 s i n ( 2 x ) + 1 32 s i n ( 4 x ) + k \int sin^4x dx = \int (\frac{1-cos(2x)}{2})^2dx = \frac{1}{4} \int (1-2cos(2x)+cos^2(2x))dx = \frac{1}{4}(x - sin(2x))+ \int \frac{1+cos(4x)}{8} dx = \frac{3}{8}x - \frac{1}{4}sin(2x) + \frac{1}{32}sin(4x)+k ∫ s i n 4 x d x = ∫ ( 2 1 − c o s ( 2 x ) ) 2 d x = 4 1 ∫ ( 1 − 2 c o s ( 2 x ) + c o s 2 ( 2 x ) ) d x = 4 1 ( x − s i n ( 2 x ) ) + ∫ 8 1 + c o s ( 4 x ) d x = 8 3 x − 4 1 s i n ( 2 x ) + 3 2 1 s i n ( 4 x ) + k
# ∫tanⁿx dx∫ t a n x d x = ∫ s i n x c o s x d x = − ∫ 1 c o s x d ( c o s x ) = − l n ∣ c o s x ∣ + k \int tanx dx = \int \frac{sinx}{cosx} dx = - \int \frac{1}{cosx} d(cosx) = -ln|cosx| + k ∫ t a n x d x = ∫ c o s x s i n x d x = − ∫ c o s x 1 d ( c o s x ) = − l n ∣ c o s x ∣ + k
∫ t a n 2 x d x = ∫ ( s e c 2 x − 1 ) d x = t a n x − x + k \int tan^2x dx = \int (sec^2x - 1) dx = tanx -x + k ∫ t a n 2 x d x = ∫ ( s e c 2 x − 1 ) d x = t a n x − x + k
∫ t a n 3 x d x = ∫ t a n 2 x ⋅ t a n x d x = ∫ s e c 2 x t a n x d x − ∫ t a n x d x = ∫ s e c x d ( s e c x ) − ∫ t a n x d x = 1 2 s e c 2 x + l n ∣ c o s x ∣ + k \int tan^3x dx = \int tan^2x \cdot tanx dx = \int sec^2xtanx \; dx - \int tanx \; dx = \int secx \; d(secx) - \int tanx dx = \frac{1}{2} sec^2x + ln|cosx| + k ∫ t a n 3 x d x = ∫ t a n 2 x ⋅ t a n x d x = ∫ s e c 2 x t a n x d x − ∫ t a n x d x = ∫ s e c x d ( s e c x ) − ∫ t a n x d x = 2 1 s e c 2 x + l n ∣ c o s x ∣ + k
∫ t a n 4 x d x = ∫ t a n 2 x ⋅ t a n 2 x d x = ∫ s e c 2 x t a n 2 x d x − ∫ t a n 2 x d x = ∫ t a n 2 x d ( t a n x ) − ∫ t a n x 2 d x = 1 3 t a n 3 x − ( t a n x − x + k ) = 1 3 t a n 3 x − t a n x + x + k \int tan^4x dx = \int tan^2x \cdot tan^2x dx = \int sec^2xtan^2x \; dx - \int tan^2x \; dx = \int tan^2x \; d(tanx) - \int tanx^2 dx = \frac{1}{3}tan^3x -(tanx -x + k) = \frac{1}{3}tan^3x -tanx +x + k ∫ t a n 4 x d x = ∫ t a n 2 x ⋅ t a n 2 x d x = ∫ s e c 2 x t a n 2 x d x − ∫ t a n 2 x d x = ∫ t a n 2 x d ( t a n x ) − ∫ t a n x 2 d x = 3 1 t a n 3 x − ( t a n x − x + k ) = 3 1 t a n 3 x − t a n x + x + k
# ∫secⁿx dx∫ s e c x d x = ∫ s e c x ⋅ s e c x + t a n x s e c x + t a n x d x = ∫ s e c 2 x + t a n x s e c x s e c x + t a n x d x = ∫ 1 s e c x + t a n x d ( t a n x + s e c x ) = l n ∣ s e c x + t a n x ∣ + k \int secx dx = \int secx \cdot \frac{secx + tanx}{secx + tanx}dx = \int \frac{sec^2x+tanxsecx}{secx+tanx}dx = \int \frac{1}{secx+tanx}d(tanx+secx) = ln|secx+tanx|+k ∫ s e c x d x = ∫ s e c x ⋅ s e c x + t a n x s e c x + t a n x d x = ∫ s e c x + t a n x s e c 2 x + t a n x s e c x d x = ∫ s e c x + t a n x 1 d ( t a n x + s e c x ) = l n ∣ s e c x + t a n x ∣ + k
∫ s e c 2 d x = t a n x + k \int sec^2 dx = tanx+k ∫ s e c 2 d x = t a n x + k
∫ s e c 3 x d x = ∫ s e c 2 x ⋅ s e c x d x \int sec^3x \; dx = \int sec^2x \cdot secx \; dx ∫ s e c 3 x d x = ∫ s e c 2 x ⋅ s e c x d x Let g ′ ( x ) = s e c 2 x , f ( x ) = s e c x g'(x) = sec^2x, f(x) = secx g ′ ( x ) = s e c 2 x , f ( x ) = s e c x ⇒ g ( x ) = t a n x , f ′ ( x ) = t a n x s e c x \Rightarrow g(x) = tanx, f'(x) = tanxsecx ⇒ g ( x ) = t a n x , f ′ ( x ) = t a n x s e c x
∫ s e c 2 x ⋅ s e c x d x = s e c x t a n x − ∫ t a n x ⋅ t a n x s e c x d x = s e c x t a n x − ∫ t a n 2 x s e c x d x = s e c x t a n x − ∫ ( s e c 2 x − 1 ) 2 s e c x d x = s e c x t a n x − ∫ s e c x 3 d x + ∫ s e c x d x \int sec^2x \cdot secx \; dx = secxtanx - \int tanx \cdot tanxsecx \; dx = secxtanx - \int tan^2xsecx \; dx = secxtanx - \int (sec^2x-1)^2secx \; dx = secxtanx - \int secx^3 \; dx + \int secx \; dx ∫ s e c 2 x ⋅ s e c x d x = s e c x t a n x − ∫ t a n x ⋅ t a n x s e c x d x = s e c x t a n x − ∫ t a n 2 x s e c x d x = s e c x t a n x − ∫ ( s e c 2 x − 1 ) 2 s e c x d x = s e c x t a n x − ∫ s e c x 3 d x + ∫ s e c x d x ⇒ 2 ∫ s e c 3 x d x = s e c x t a n x + ∫ s e c x d x \Rightarrow 2\int sec^3x \; dx = secxtanx + \int secx \; dx ⇒ 2 ∫ s e c 3 x d x = s e c x t a n x + ∫ s e c x d x ⇒ ∫ s e c 3 x d x = 1 2 s e c x t a n x + 1 2 l n ∣ s e c x + t a n x ∣ + k \Rightarrow \int sec^3x \; dx = \frac{1}{2}secxtanx + \frac{1}{2}ln|secx+tanx| + k ⇒ ∫ s e c 3 x d x = 2 1 s e c x t a n x + 2 1 l n ∣ s e c x + t a n x ∣ + k
∫ s e c 4 x d x = ∫ s e c 2 x ⋅ s e c 2 x d x = ∫ ( t a n 2 x + 1 ) d ( t a n x ) = 1 3 t a n 3 x + t a n x + k \int sec^4x \; dx = \int sec^2x \cdot sec^2x \; dx = \int (tan^2x+1) \; d(tanx) = \frac{1}{3}tan^3x + tanx + k ∫ s e c 4 x d x = ∫ s e c 2 x ⋅ s e c 2 x d x = ∫ ( t a n 2 x + 1 ) d ( t a n x ) = 3 1 t a n 3 x + t a n x + k
# sinn xcosm x / tann xsecm x∫ s i n 5 x c o s 2 x d x = ∫ s i n 4 x c o s 2 x d ( − c o s x ) = − ∫ ( 1 − c o s 2 x ) 2 c o s 2 x d ( c o s x ) = − ∫ c o s 2 x − 2 c o s 4 x + c o s 6 d x = − 1 3 c o s 3 x + 2 5 c o s 5 x − 1 7 c o s 7 x + k \int sin^5xcos^2x \; dx = \int sin^4xcos^2x \; d(-cosx) = -\int (1-cos^2x)^2cos^2x \; d(cosx) = - \int cos^2x - 2cos^4x + cos^6 \; dx = -\frac{1}{3}cos^3x + \frac{2}{5}cos^5x - \frac{1}{7}cos^7x +k ∫ s i n 5 x c o s 2 x d x = ∫ s i n 4 x c o s 2 x d ( − c o s x ) = − ∫ ( 1 − c o s 2 x ) 2 c o s 2 x d ( c o s x ) = − ∫ c o s 2 x − 2 c o s 4 x + c o s 6 d x = − 3 1 c o s 3 x + 5 2 c o s 5 x − 7 1 c o s 7 x + k
∫ t a n 6 x s e c 4 x d x = ∫ t a n 6 x s e c 2 x d ( t a n x ) = ∫ t a n 6 x ( t a n 2 x + 1 ) d ( t a n x ) = ∫ t a n 8 x + t a n 6 x d ( t a n x ) = 1 9 t a n 9 x + 1 7 t a n 7 x + k \int tan^6xsec^4x \; dx = \int tan^6xsec^2x \; d(tanx) = \int tan^6x(tan^2x+1) \; d(tanx) = \int tan^8x + tan^6x \; d(tanx) = \frac{1}{9}tan^9x+\frac{1}{7}tan^7x +k ∫ t a n 6 x s e c 4 x d x = ∫ t a n 6 x s e c 2 x d ( t a n x ) = ∫ t a n 6 x ( t a n 2 x + 1 ) d ( t a n x ) = ∫ t a n 8 x + t a n 6 x d ( t a n x ) = 9 1 t a n 9 x + 7 1 t a n 7 x + k
∫ t a n 5 x s e c 7 x d x = ∫ t a n 4 x s e c 6 x ⋅ t a n x s e c x d x = ∫ ( s e c 2 x − 1 ) 2 s e c 6 x d ( s e c x ) = ∫ s e c 10 x − 2 s e c 8 x + s e c 6 x d ( s e c x ) = 1 11 s e c 11 x − 2 9 s e c 9 + 1 7 s e c 7 x + k \int tan^5xsec^7x \; dx = \int tan^4x sec^6x \cdot tanxsecx \; dx = \int (sec^2x-1)^2sec^6x \; d(secx) = \int sec^{10}x-2sec^8x +sec^6x \; d(secx) = \frac{1}{11}sec^{11}x-\frac{2}{9}sec^9 + \frac{1}{7} sec^7x+k ∫ t a n 5 x s e c 7 x d x = ∫ t a n 4 x s e c 6 x ⋅ t a n x s e c x d x = ∫ ( s e c 2 x − 1 ) 2 s e c 6 x d ( s e c x ) = ∫ s e c 1 0 x − 2 s e c 8 x + s e c 6 x d ( s e c x ) = 1 1 1 s e c 1 1 x − 9 2 s e c 9 + 7 1 s e c 7 x + k
∫ c o s 3 x s i n x d x = ∫ c o s 3 x ( s i n x ) − 1 2 d x = ∫ c o s 2 x ( s i n x ) − 1 2 d ( s i n x ) = ∫ ( 1 − s i n 2 x ) 2 ( s i n x ) − 1 2 d x = ∫ ( s i n x ) − 1 2 − ( s i n x ) 3 2 d ( s i n x ) = 2 ( s i n x ) 1 2 − 2 5 ( s i n x ) 5 2 + k \int \frac{cos^3x}{\sqrt{sinx}} dx = \int cos^3x(sinx)^{-\frac{1}{2}} dx = \int cos^2x(sinx)^{-\frac{1}{2}}d(sinx) = \int (1-sin^2x)^2(sinx)^{-\frac{1}{2}}dx= \int (sinx)^{-\frac{1}{2}}-(sinx)^{\frac{3}{2}}d(sinx) = 2(sinx)^{\frac{1}{2}} - \frac{2}{5}(sinx)^{\frac{5}{2}} +k ∫ s i n x c o s 3 x d x = ∫ c o s 3 x ( s i n x ) − 2 1 d x = ∫ c o s 2 x ( s i n x ) − 2 1 d ( s i n x ) = ∫ ( 1 − s i n 2 x ) 2 ( s i n x ) − 2 1 d x = ∫ ( s i n x ) − 2 1 − ( s i n x ) 2 3 d ( s i n x ) = 2 ( s i n x ) 2 1 − 5 2 ( s i n x ) 2 5 + k
# Reference蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109