Area Properties of Integrals Fundamental Theorem of Calculus # Area曲線下的面積 (只考慮[ a , b ] [a,b] [ a , b ] 上的非負函數)
Let S = { ( x , y ) ∣ a ≤ x ≤ b , 0 ≤ y ≤ f ( x ) } . S = \{(x,y) | a \le x \le b , 0 \le y \le f(x) \}. S = { ( x , y ) ∣ a ≤ x ≤ b , 0 ≤ y ≤ f ( x ) } . Divide [ a , b ] [a,b] [ a , b ] into n n n subintervals:[ x 0 , x 1 ] , [ x 1 , x 2 ] . . . [ x n − 1 , x n ] , w h e r e x 0 = a , x n = b [x_0,x_1],[x_1,x_2]...[x_{n-1},x_n], \; where \; x_0 =a, x_n = b [ x 0 , x 1 ] , [ x 1 , x 2 ] . . . [ x n − 1 , x n ] , w h e r e x 0 = a , x n = b Use a rectangle to approximate each S i S_i S i .Define that:
U n = f ( x 1 ) Δ x 1 + f ( x 2 ) Δ x 2 + . . . + f ( x n ) Δ x n = ∑ i = 1 n f ( x i ) Δ x i U_n = f(x_1)\Delta x_1+f(x_2)\Delta x_2+...+f(x_n)\Delta x_n = \sum^n_{i=1}f(x_i)\Delta x_i U n = f ( x 1 ) Δ x 1 + f ( x 2 ) Δ x 2 + . . . + f ( x n ) Δ x n = ∑ i = 1 n f ( x i ) Δ x i R n = f ( x 0 ) Δ x 1 + f ( x 1 ) Δ x 2 + . . . + f ( x n − 1 ) Δ x n = ∑ i = 1 n f ( x i − 1 ) Δ x i R_n = f(x_0)\Delta x_1+f(x_1)\Delta x_2+...+f(x_{n-1})\Delta x_n = \sum^n_{i=1}f(x_{i-1})\Delta x_i R n = f ( x 0 ) Δ x 1 + f ( x 1 ) Δ x 2 + . . . + f ( x n − 1 ) Δ x n = ∑ i = 1 n f ( x i − 1 ) Δ x i w h e r e Δ x n = x i − x i − 1 ∀ i ∈ { 1 , 2 , . . . , n } . where \Delta x_n = x_i - x_{i-1} \forall i \in \{ 1,2,...,n \}. w h e r e Δ x n = x i − x i − 1 ∀ i ∈ { 1 , 2 , . . . , n } . # DefineIf f : [ a , b ] → R + ∪ { 0 } f: [a,b] \to \mathbb{R^+} \cup \{ 0 \} f : [ a , b ] → R + ∪ { 0 } is continuous, then A = lim n → ∞ R n = lim n → ∞ ∑ i = 1 n f ( x i ) Δ x i A = \lim_{n \to \infty}R_n = \lim_{n \to \infty} \sum^n_{i=1}f(x_i)\Delta x_i A = lim n → ∞ R n = lim n → ∞ ∑ i = 1 n f ( x i ) Δ x i then A = lim n → ∞ L n = lim n → ∞ ∑ i = 1 n f ( x i − 1 ) Δ x i A = \lim_{n \to \infty}L_n = \lim_{n \to \infty} \sum^n_{i=1}f(x_{i-1})\Delta x_i A = lim n → ∞ L n = lim n → ∞ ∑ i = 1 n f ( x i − 1 ) Δ x i
# PartitionP = { a = x 0 , x 1 , x 2 , . . . , x n = b } P = \{ a = x_0, x_1,x_2,...,x_n =b \} P = { a = x 0 , x 1 , x 2 , . . . , x n = b } is a partition of [ a , b ] [a,b] [ a , b ] .
等分: Δ x i = b − a n \Delta x_i = \frac{b-a}{n} Δ x i = n b − a . 不等分: Ex.x 0 = a , x 1 = a r , . . . , x n = a r n = b , r = b a n a b ≥ 0 , a ≠ 0 x_0 =a,x_1=ar,...,x_n = ar^n = b, r = \sqrt[n]{\frac{b}{a} } ab \ge 0 , a \neq 0 x 0 = a , x 1 = a r , . . . , x n = a r n = b , r = n a b a b ≥ 0 , a = 0 P = { a , a r , a r 2 , . . . , a r n } , Δ x i = x i − x i − 1 = a r i − a r i − 1 . P = \{ a,ar,ar^2,...,ar^n \},\Delta x_i =x_i - x_{i-1} = ar^i - ar^{i-1}. P = { a , a r , a r 2 , . . . , a r n } , Δ x i = x i − x i − 1 = a r i − a r i − 1 . # ExampleP = { 0 = x 0 , x 1 = 1 2 n , x 2 = 1 2 n − 1 , . . . , x n − 1 = 1 4 , x n = 1 2 } . P = \{0 = x_0,x_1 = \frac{1}{2^n}, x_2 = \frac{1}{2^{n-1}},...,x_{n-1} = \frac{1}{4}, x_n = \frac{1}{2} \}. P = { 0 = x 0 , x 1 = 2 n 1 , x 2 = 2 n − 1 1 , . . . , x n − 1 = 4 1 , x n = 2 1 } . Δ x i = x i − x i − 1 = 1 2 n + 1 − x − 1 2 n − x , ∥ P ∥ = 1 2 − 1 4 = 1 4 . \Delta x_i = x_i - x_{i-1} = \frac{1}{2^{n+1-x}} - \frac{1}{2^{n-x}}, \left \| P \right \| = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}. Δ x i = x i − x i − 1 = 2 n + 1 − x 1 − 2 n − x 1 , ∥ P ∥ = 2 1 − 4 1 = 4 1 .
Remark We want to find a partition of [ a , b ] [a,b] [ a , b ] such that ∥ P ∥ → 0 \left \| P \right \| \to 0 ∥ P ∥ → 0 implies n → ∞ n \to \infty n → ∞ . If n → ∞ n \to \infty n → ∞ ,then ∥ P ∥ → 0 \left \| P \right \| \to 0 ∥ P ∥ → 0 不一定成立 # Examplef ( x ) = x 2 f(x) = x^2 f ( x ) = x 2 on [ a , b ] [a,b] [ a , b ] . Find A A A .
Taking a partition of P = { a = x 0 , x 1 , . . . , x n = b } P = \{ a = x_0, x_1,...,x_n=b \} P = { a = x 0 , x 1 , . . . , x n = b } ,where x i = a + b − a n i , Δ x = b − a n x_i = a + \frac{b-a}{n}i,\Delta x = \frac{b-a}{n} x i = a + n b − a i , Δ x = n b − a . L n = f ( x 0 ) Δ x + f ( x 1 ) Δ x + . . . + f ( x n − 1 ) Δ x = b − a n ∑ i = 0 n − 1 f ( x i ) = b − a n ∑ i = 0 n − 1 { a 2 + 2 a ( b − a ) n i + ( b − a ) 2 n 2 i 2 } = a 2 ( b − a ) + 2 a ( b − a ) 2 n 2 ⋅ n ( n − 1 ) 2 + ( b − a ) 3 n 3 ⋅ n ( n − 1 ) ( 2 n − 1 ) 6 = a 2 ( b − a ) + a ( b − a ) 2 ( 1 − 1 n ) + ( b − a ) 3 6 ( 1 − 1 n ) ( 2 − 1 n ) L_n = f(x_0)\Delta x+f(x_1)\Delta x+...+f(x_{n-1})\Delta x = \frac{b-a}{n} \sum^{n-1}_{i=0}f(x_{i}) \\= \frac{b-a}{n} \sum^{n-1}_{i=0} \{ a^2 + 2\frac{a(b-a)}{n}i + \frac{(b-a)^2}{n^2}i^2 \} = a^2(b-a) + \frac{2a(b-a)^2}{n^2} \cdot \frac{n(n-1)}{2} + \frac{(b-a)^3}{n^3}\cdot \frac{n(n-1)(2n-1)}{6} \\= a^2(b-a) + a(b-a)^2(1-\frac{1}{n})+\frac{(b-a)^3}{6}(1-\frac{1}{n})(2-\frac{1}{n}) L n = f ( x 0 ) Δ x + f ( x 1 ) Δ x + . . . + f ( x n − 1 ) Δ x = n b − a ∑ i = 0 n − 1 f ( x i ) = n b − a ∑ i = 0 n − 1 { a 2 + 2 n a ( b − a ) i + n 2 ( b − a ) 2 i 2 } = a 2 ( b − a ) + n 2 2 a ( b − a ) 2 ⋅ 2 n ( n − 1 ) + n 3 ( b − a ) 3 ⋅ 6 n ( n − 1 ) ( 2 n − 1 ) = a 2 ( b − a ) + a ( b − a ) 2 ( 1 − n 1 ) + 6 ( b − a ) 3 ( 1 − n 1 ) ( 2 − n 1 ) A = lim n → ∞ L n = a 2 ( b − a ) + a ( b − a ) 2 + 1 3 ( b − a ) 3 A = \lim_{n \to \infty}L_n = a^2(b-a)+a(b-a)^2 + \frac{1}{3}(b-a)^3 A = lim n → ∞ L n = a 2 ( b − a ) + a ( b − a ) 2 + 3 1 ( b − a ) 3 # DefineU n U_n U n ,上和: Taking x i ∗ ∈ [ x i − 1 , x i ] x_i* \in [x_{i-1},x_i] x i ∗ ∈ [ x i − 1 , x i ] such that f f f has a maximum f ( x i ∗ ) o n [ x i − 1 , x i ] f(x_i*) on [x_{i-1},x_i] f ( x i ∗ ) o n [ x i − 1 , x i ] ,then ∑ i = 1 n f ( x i ∗ ) Δ x i \sum_{i=1}^{n}f(x_i*)\Delta x_i ∑ i = 1 n f ( x i ∗ ) Δ x i is called the upper sum of f f f on [ a , b ] [a,b] [ a , b ] with a partition P = { x 0 = a , x 1 , . . . , x n = b } P = \{ x_0 =a,x_1,...,x_n =b \} P = { x 0 = a , x 1 , . . . , x n = b } .
L n L_n L n ,下和: Taking x i ∗ ∈ [ x i − 1 , x i ] x_i* \in [x_{i-1},x_i] x i ∗ ∈ [ x i − 1 , x i ] such that f f f has a minimum f ( x i ∗ ) o n [ x i − 1 , x i ] f(x_i*) on [x_{i-1},x_i] f ( x i ∗ ) o n [ x i − 1 , x i ] ,then ∑ i = 1 n f ( x i ∗ ) Δ x i \sum_{i=1}^{n}f(x_i*)\Delta x_i ∑ i = 1 n f ( x i ∗ ) Δ x i is called the lower sum of f f f on [ a , b ] [a,b] [ a , b ] with a partition P = { x 0 = a , x 1 , . . . , x n = b } P = \{ x_0 =a,x_1,...,x_n =b \} P = { x 0 = a , x 1 , . . . , x n = b } .
# The Definite IntegralDivide [ a , b ] [a,b] [ a , b ] into n n n subintervals (子區間) of each width Δ x = b − a n \Delta x = \frac{b-a}{n} Δ x = n b − a :P = { x 0 = a , x 1 , . . . , x n = b } P = \{ x_0 =a,x_1,...,x_n = b \} P = { x 0 = a , x 1 , . . . , x n = b } . Let x i ∗ x_i* x i ∗ be a sample point of subinterval [ x i − 1 , x i ] [x_{i-1},x_i] [ x i − 1 , x i ] for all i = 1 , 2 , . . . , n i = 1,2,...,n i = 1 , 2 , . . . , n The definite integral of f f f from a a a to b b b is defined by ∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 n f ( x i ∗ ) Δ x \int^b_af(x)dx = \lim_{n\to \infty}\sum_{i=1}^nf(x_i*)\Delta x ∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 n f ( x i ∗ ) Δ x if the limit exists. Moreover, we say that f f f is integrable on [ a , b ] [a,b] [ a , b ] .
# Example∫ 0 π 2 s i n x d x = ? \int^{\frac{\pi}{2}}_0 sinxdx = ? ∫ 0 2 π s i n x d x = ?
Taking x i = 0 + π 2 − 0 n ⋅ i , i = { 1 , 2 , 3 , . . . , n } , Δ x = π 2 n x_i = 0+\frac{\frac{\pi}{2}-0}{n}\cdot i, \; i = \{ 1,2,3,...,n\}, \; \Delta x = \frac{\pi}{2n} x i = 0 + n 2 π − 0 ⋅ i , i = { 1 , 2 , 3 , . . . , n } , Δ x = 2 n π .
Let the right sum be ∑ i = 1 n f ( x i ) Δ x = ∑ i = 1 n π 2 n s i n ( π 2 n i ) = R n \sum_{i=1}^nf(x_i)\Delta x = \sum_{i=1}^n \frac{\pi}{2n}sin(\frac{\pi}{2n}i) = R_n ∑ i = 1 n f ( x i ) Δ x = ∑ i = 1 n 2 n π s i n ( 2 n π i ) = R n ∵ 2 s i n ( π 4 n ) s i n ( π 2 n i ) = c o s ( π 4 n − π 2 n i ) − c o s ( π 4 n + π 2 n i ) = c o s ( π ( 1 − 2 i ) 4 n ) − c o s ( π ( 1 + 2 i ) 4 n ) \because 2sin(\frac{\pi}{4n})sin(\frac{\pi}{2n}i) = cos (\frac{\pi}{4n} - \frac{\pi}{2n}i) - cos (\frac{\pi}{4n} + \frac{\pi}{2n}i) = cos(\frac{\pi(1-2i)}{4n}) - cos(\frac{\pi(1+2i)}{4n}) ∵ 2 s i n ( 4 n π ) s i n ( 2 n π i ) = c o s ( 4 n π − 2 n π i ) − c o s ( 4 n π + 2 n π i ) = c o s ( 4 n π ( 1 − 2 i ) ) − c o s ( 4 n π ( 1 + 2 i ) ) ⇒ s i n ( π 2 n i ) = 1 2 s i n ( π 4 n ) ( c o s ( π ( 1 − 2 i ) 4 n ) − c o s ( π ( 1 + 2 i ) 4 n ) ) \Rightarrow sin(\frac{\pi}{2n}i) = \frac{1}{2sin(\frac{\pi}{4n})}(cos(\frac{\pi(1-2i)}{4n}) - cos(\frac{\pi(1+2i)}{4n})) ⇒ s i n ( 2 n π i ) = 2 s i n ( 4 n π ) 1 ( c o s ( 4 n π ( 1 − 2 i ) ) − c o s ( 4 n π ( 1 + 2 i ) ) ) ∴ R n = 1 2 s i n ( π 4 n ) ⋅ π 2 n ∑ i = 1 n ( c o s ( π ( 1 − 2 i ) 4 n ) − c o s ( π ( 1 + 2 i ) 4 n ) ) = π 4 n s i n ( π 4 n ) { ( c o s π 4 n − c o s 3 π 4 n ) + ( c o s 3 π 4 n − c o s 5 π 4 n ) + . . . + ( c o s ( 2 n − 1 ) π 4 n − c o s ( 2 n + 1 ) π 4 n ) } = π 4 n s i n ( π 4 n ) ( c o s ( π 4 n ) − c o s ( π 4 ( 2 + 1 n ) ) ) . \therefore R_n = \frac{1}{2sin(\frac{\pi}{4n})} \cdot \frac{\pi}{2n} \sum^n_{i=1}(cos(\frac{\pi(1-2i)}{4n}) - cos(\frac{\pi(1+2i)}{4n})) = \frac{\frac{\pi}{4n}}{sin(\frac{\pi}{4n})} \{ (cos\frac{\pi}{4n} - cos\frac{3\pi}{4n})+(cos\frac{3\pi}{4n} - cos\frac{5\pi}{4n}) +...+(cos\frac{(2n-1)\pi}{4n} - cos\frac{(2n+1)\pi}{4n}) \} = \frac{\frac{\pi}{4n}}{sin(\frac{\pi}{4n})} (cos(\frac{\pi}{4n}) - cos(\frac{\pi}{4}(2+\frac{1}{n})) ). ∴ R n = 2 s i n ( 4 n π ) 1 ⋅ 2 n π ∑ i = 1 n ( c o s ( 4 n π ( 1 − 2 i ) ) − c o s ( 4 n π ( 1 + 2 i ) ) ) = s i n ( 4 n π ) 4 n π { ( c o s 4 n π − c o s 4 n 3 π ) + ( c o s 4 n 3 π − c o s 4 n 5 π ) + . . . + ( c o s 4 n ( 2 n − 1 ) π − c o s 4 n ( 2 n + 1 ) π ) } = s i n ( 4 n π ) 4 n π ( c o s ( 4 n π ) − c o s ( 4 π ( 2 + n 1 ) ) ) . ⇒ lim n → ∞ R n = { 1 − 0 } = 1 \Rightarrow \lim_{n \to \infty}R_n = \{ 1-0 \} =1 ⇒ lim n → ∞ R n = { 1 − 0 } = 1 .
# Examplelim n → ∞ 1 5 + 2 5 + . . . + n 5 n 6 \lim_{n \to \infty} \frac{1^5+2^5+...+n^5}{n^6} lim n → ∞ n 6 1 5 + 2 5 + . . . + n 5 .lim n → ∞ 1 n { 1 + 1 n + 1 + 2 n + . . . + 1 + n n } \lim_{n\to \infty}\frac{1}{n} \{ \sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}}+...+\sqrt{1 + \frac{n}{n}} \} lim n → ∞ n 1 { 1 + n 1 + 1 + n 2 + . . . + 1 + n n } .lim n → ∞ { 1 1 + n + 1 2 + n + . . . + 1 2 n } \lim_{n \to \infty} \{ \frac{1}{1+n} + \frac{1}{2+n} + ... + \frac{1}{2n} \} lim n → ∞ { 1 + n 1 + 2 + n 1 + . . . + 2 n 1 } .lim n → ∞ 1 5 + 2 5 + . . . + n 5 n 6 = lim n → ∞ 1 n { ( 1 n ) 5 + ( 2 n ) 5 + ( 3 n ) 5 + . . . + ( n n ) 5 } = lim n → ∞ 1 n ∑ i = 1 n ( i n ) 5 = lim n → ∞ ∑ i = 1 n ( i n ) 5 1 n = lim n → ∞ ∑ i = 1 n f ( x i ) Δ x = ∫ 0 1 x 5 d x = 1 6 x 6 ∣ x = 0 x = 1 = 1 6 \lim_{n \to \infty} \frac{1^5+2^5+...+n^5}{n^6} = \lim_{n \to \infty} \frac{1}{n} \{ (\frac{1}{n})^5 + (\frac{2}{n})^5 +(\frac{3}{n})^5 + ... + (\frac{n}{n})^5 \} \\= \lim_{n \to \infty} \frac{1}{n}\sum^n_{i=1}(\frac{i}{n})^5 = \lim_{n \to \infty} \sum^n_{i=1}(\frac{i}{n})^5\frac{1}{n} = \lim_{n \to \infty} \sum^n_{i=1}f(x_i)\Delta x \\= \int^1_0 x^5 dx = \frac{1}{6}x^6|^{x=1}_{x=0} = \frac{1}{6} lim n → ∞ n 6 1 5 + 2 5 + . . . + n 5 = lim n → ∞ n 1 { ( n 1 ) 5 + ( n 2 ) 5 + ( n 3 ) 5 + . . . + ( n n ) 5 } = lim n → ∞ n 1 ∑ i = 1 n ( n i ) 5 = lim n → ∞ ∑ i = 1 n ( n i ) 5 n 1 = lim n → ∞ ∑ i = 1 n f ( x i ) Δ x = ∫ 0 1 x 5 d x = 6 1 x 6 ∣ x = 0 x = 1 = 6 1 .
lim n → ∞ 1 n { 1 + 1 n + 1 + 2 n + . . . + 1 + n n } = lim n → ∞ ∑ i = 1 n ( 1 + i n ⋅ 1 n ) \lim_{n\to \infty}\frac{1}{n} \{ \sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}}+...+\sqrt{1 + \frac{n}{n}} \} = \lim_{n\to \infty} \sum^n_{i=1}(\sqrt{1+\frac{i}{n}} \cdot \frac{1}{n}) lim n → ∞ n 1 { 1 + n 1 + 1 + n 2 + . . . + 1 + n n } = lim n → ∞ ∑ i = 1 n ( 1 + n i ⋅ n 1 )
Let Δ x = 1 − 0 n , x i = 0 + i n , f ( x ) = 1 + x \Delta x = \frac{1-0}{n}, x_i = 0+\frac{i}{n} , f(x) = \sqrt{1+x} Δ x = n 1 − 0 , x i = 0 + n i , f ( x ) = 1 + x lim n → ∞ ∑ i = 1 n ( 1 + i n ⋅ 1 n ) = ∫ 0 1 1 + x d x = 2 3 ( 1 + x ) 3 2 ∣ 0 1 = 3 4 2 − 2 3 \lim_{n\to \infty} \sum^n_{i=1}(\sqrt{1+\frac{i}{n}} \cdot \frac{1}{n}) = \int^1_0\sqrt{1+x}dx = \frac{2}{3}(1+x)^{\frac{3}{2}}|^1_0 = \frac{3}{4}\sqrt{2} - \frac{2}{3} lim n → ∞ ∑ i = 1 n ( 1 + n i ⋅ n 1 ) = ∫ 0 1 1 + x d x = 3 2 ( 1 + x ) 2 3 ∣ 0 1 = 4 3 2 − 3 2 .
Let Δ x = 2 − 1 n , x i = 1 + i n , f ( x ) = x \Delta x = \frac{2-1}{n}, x_i = 1+\frac{i}{n} , f(x) = \sqrt{x} Δ x = n 2 − 1 , x i = 1 + n i , f ( x ) = x lim n → ∞ ∑ i = 1 n ( 1 + i n ⋅ 1 n ) = ∫ 1 2 x d x = 2 3 ( x ) 3 2 ∣ 1 2 = 3 4 2 − 2 3 \lim_{n\to \infty} \sum^n_{i=1}(\sqrt{1+\frac{i}{n}} \cdot \frac{1}{n}) = \int^2_1\sqrt{x}dx = \frac{2}{3}(x)^{\frac{3}{2}}|^2_1 = \frac{3}{4}\sqrt{2} - \frac{2}{3} lim n → ∞ ∑ i = 1 n ( 1 + n i ⋅ n 1 ) = ∫ 1 2 x d x = 3 2 ( x ) 2 3 ∣ 1 2 = 4 3 2 − 3 2 .
lim n → ∞ { 1 1 + n + 1 2 + n + . . . + 1 2 n } = lim n → ∞ 1 n { 1 1 n + 1 + 1 2 n + 1 + . . . + 1 n n + 1 } = lim n → ∞ ∑ i = 1 n ( 1 n ⋅ 1 1 + 2 n ) \lim_{n \to \infty} \{ \frac{1}{1+n} + \frac{1}{2+n} + ... + \frac{1}{2n} \} = \lim_{n \to \infty} \frac{1}{n} \{ \frac{1}{\frac{1}{n}+1} + \frac{1}{\frac{2}{n}+1} + ... +\frac{1}{\frac{n}{n}+1} \} = \lim_{n \to \infty}\sum^n_{i=1}(\frac{1}{n} \cdot \frac{1}{1+\frac{2}{n}}) lim n → ∞ { 1 + n 1 + 2 + n 1 + . . . + 2 n 1 } = lim n → ∞ n 1 { n 1 + 1 1 + n 2 + 1 1 + . . . + n n + 1 1 } = lim n → ∞ ∑ i = 1 n ( n 1 ⋅ 1 + n 2 1 ) Let Δ x = 1 − 0 n , x i = i n , f ( x ) = 1 1 + x \Delta x = \frac{1-0}{n} , x_i = \frac{i}{n}, f(x) = \frac{1}{1+x} Δ x = n 1 − 0 , x i = n i , f ( x ) = 1 + x 1 .∫ 0 1 1 1 + x d x = l n ∣ 1 + x ∣ ∣ x = 0 x = 1 = l n 2 \int^1_0 \frac{1}{1+x} dx = ln|1+x| |^{x=1}_{x=0} = ln2 ∫ 0 1 1 + x 1 d x = l n ∣ 1 + x ∣ ∣ x = 0 x = 1 = l n 2
# Example∫ a b x q d x , q ≠ 1 , q ∈ Q , 0 < a < b \int^b_a x^q dx, q \neq 1, q \in \mathbb{Q}, 0<a<b ∫ a b x q d x , q = 1 , q ∈ Q , 0 < a < b
Let r = ( b a ) 1 n r = (\frac{b}{a})^\frac{1}{n} r = ( a b ) n 1 and x i = a r i , i = 0 , 1 , . . . , n , Δ x i = a r i − 1 ( r − 1 ) x_i = ar^i, i = 0,1,...,n, \Delta x_i = ar^{i-1}(r-1) x i = a r i , i = 0 , 1 , . . . , n , Δ x i = a r i − 1 ( r − 1 ) .P = x 0 = a , x 1 , x 2 , . . . x n = b P = {x_0 = a,x_1,x_2,...x_n=b} P = x 0 = a , x 1 , x 2 , . . . x n = b .R n = ∑ i = 1 n f ( x i − 1 ) Δ x i = ∑ i = 1 n ( x i − 1 ) q ⋅ a r i − 1 ( r − 1 ) = ∑ i = 1 n ( a r i − 1 ) q ⋅ a r i − 1 ( r − 1 ) = a q + 1 ( r − 1 ) ∑ i = 1 n r q ( i − 1 ) r i − 1 = a q + 1 ( r − 1 ) ∑ i = 1 n r ( q + 1 ) ( i − 1 ) = a q + 1 ( r − 1 ) 1 ⋅ ( r ( q + 1 ) n − 1 ) r q + 1 − 1 = r − 1 r q + 1 − 1 a q + 1 ( ( b a ) q + 1 − 1 ) = r − 1 r q + 1 − 1 ( b q + 1 − a q + 1 ) R_n = \sum^n_{i=1}f(x_{i-1})\Delta x_i = \sum^n_{i=1}(x_{i-1})^q \cdot ar^{i-1}(r-1) = \sum^n_{i=1}(ar^{i-1})^q \cdot ar^{i-1}(r-1) \\= a^{q+1}(r-1) \sum^n_{i=1}r^{q(i-1)}r^{i-1} = a^{q+1}(r-1) \sum^n_{i=1}r^{(q+1)(i-1)} = a^{q+1}(r-1)\frac{1\cdot (r^{(q+1)n}-1)}{r^{q+1}-1} \\= \frac{r-1}{r^{q+1}-1}a^{q+1}((\frac{b}{a})^{q+1}-1) = \frac{r-1}{r^{q+1}-1} (b^{q+1} - a^{q+1}) R n = ∑ i = 1 n f ( x i − 1 ) Δ x i = ∑ i = 1 n ( x i − 1 ) q ⋅ a r i − 1 ( r − 1 ) = ∑ i = 1 n ( a r i − 1 ) q ⋅ a r i − 1 ( r − 1 ) = a q + 1 ( r − 1 ) ∑ i = 1 n r q ( i − 1 ) r i − 1 = a q + 1 ( r − 1 ) ∑ i = 1 n r ( q + 1 ) ( i − 1 ) = a q + 1 ( r − 1 ) r q + 1 − 1 1 ⋅ ( r ( q + 1 ) n − 1 ) = r q + 1 − 1 r − 1 a q + 1 ( ( a b ) q + 1 − 1 ) = r q + 1 − 1 r − 1 ( b q + 1 − a q + 1 ) ∵ d d r ∣ q = 1 r q + 1 = q + 1 \because \frac{d}{dr}|_{q=1}r^{q+1} = q+1 ∵ d r d ∣ q = 1 r q + 1 = q + 1 ∴ lim r → 1 r q + 1 − 1 r − 1 = d d r ∣ q = 1 r q + 1 = q + 1 \therefore \lim_{r \to 1} \frac{r^{q+1}-1}{r-1} = \frac{d}{dr}|_{q=1}r^{q+1} = q+1 ∴ lim r → 1 r − 1 r q + 1 − 1 = d r d ∣ q = 1 r q + 1 = q + 1
⇒ lim n → ∞ R n = lim n → ∞ ∑ i = 1 n f ( x i − 1 ) Δ x i = lim n → ∞ r − 1 r q + 1 − 1 ( b q + 1 − a q + 1 ) = lim r → 1 r − 1 r q + 1 − 1 ( b q + 1 − a q + 1 ) = 1 q + 1 ( b q + 1 − a q + 1 ) = ∫ a b x q d x \Rightarrow \lim_{n \to \infty}R_n = \lim_{n \to \infty}\sum^n_{i=1}f(x_{i-1})\Delta x_i = \lim_{n \to \infty}\frac{r-1}{r^{q+1}-1} (b^{q+1} - a^{q+1}) = \lim_{r \to 1}\frac{r-1}{r^{q+1}-1} (b^{q+1} - a^{q+1}) = \frac{1}{q+1}(b^{q+1}-a^{q+1}) = \int^b_a x^q dx ⇒ lim n → ∞ R n = lim n → ∞ ∑ i = 1 n f ( x i − 1 ) Δ x i = lim n → ∞ r q + 1 − 1 r − 1 ( b q + 1 − a q + 1 ) = lim r → 1 r q + 1 − 1 r − 1 ( b q + 1 − a q + 1 ) = q + 1 1 ( b q + 1 − a q + 1 ) = ∫ a b x q d x .
# Properties of Integrals∫ a b f ( x ) d x \int^b_af(x)dx ∫ a b f ( x ) d x is a real number.∫ a b f ( x ) d x = ∫ a b f ( y ) d y = ∫ a b f ( t ) d t \int^b_af(x)dx = \int^b_af(y)dy = \int^b_af(t)dt ∫ a b f ( x ) d x = ∫ a b f ( y ) d y = ∫ a b f ( t ) d t ∫ a a f ( x ) d x = 0 \int^a_af(x)dx = 0 ∫ a a f ( x ) d x = 0 ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int^b_af(x)dx = -\int^a_bf(x)dx ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int^b_af(x)dx = \int^c_af(x)dx + \int^b_cf(x)dx ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x (c ∈ R c \in \mathbb{R} c ∈ R )∫ a b k d x = k ( b − a ) \int^b_a k dx = k(b-a) ∫ a b k d x = k ( b − a ) ∫ a b ( k f ± h g ) d x = k ∫ a b f ( x ) d x ± h ∫ a b g ( x ) d x \int^b_a(kf \pm hg)dx = k\int^b_af(x)dx \pm h\int^b_ag(x)dx ∫ a b ( k f ± h g ) d x = k ∫ a b f ( x ) d x ± h ∫ a b g ( x ) d x ∫ a b f ( x ) d x ≤ ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \int^b_af(x)dx \le |\int^b_af(x)dx| \le \int^b_a|f(x)|dx ∫ a b f ( x ) d x ≤ ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x If f f f is odd, then ∫ − a a f ( x ) d x = 0 \int^a_{-a}f(x)dx = 0 ∫ − a a f ( x ) d x = 0 If f f f is even, then ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int^a_{-a}f(x)dx = 2\int^a_0f(x)dx ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x # Fundamental Theorem of Calculus# ThmIf f f f is continuous on [ a , b ] [a,b] [ a , b ] , then g ( x ) = ∫ a x f ( t ) d t , a ≤ x ≤ b g(x)= \int^x_a f(t)dt ,a\le x \le b g ( x ) = ∫ a x f ( t ) d t , a ≤ x ≤ b is also continuous on [ a , b ] [a,b] [ a , b ] and differentiable on ( a , b ) (a,b) ( a , b ) and g ′ ( x ) = f ( x ) g'(x) = f(x) g ′ ( x ) = f ( x ) . Moreover, d d x ∫ a x f ( t ) d t = f ( x ) \frac{d}{dx}\int^x_af(t)dt = f(x) d x d ∫ a x f ( t ) d t = f ( x ) .
# Exampled d x ∫ 3 x ( t 5 s i n ( 2 t + 5 ) ) d t \frac{d}{dx}\int^x_3 (t^5sin(2t+5))dt d x d ∫ 3 x ( t 5 s i n ( 2 t + 5 ) ) d t d d x ∫ x 1 ( u 2 l n ∣ u ∣ + t a n u ) d u \frac{d}{dx}\int^1_x (u^2ln|u|+tanu)du d x d ∫ x 1 ( u 2 l n ∣ u ∣ + t a n u ) d u Find the derivative of ∫ 2 x x s i n y d y \int^x_{\sqrt{2}}xsinydy ∫ 2 x x s i n y d y d d x ∫ 3 x ( t 5 s i n ( 2 t + 5 ) ) d t = x 5 s i n ( 2 x + 5 ) \frac{d}{dx}\int^x_3 (t^5sin(2t+5))dt = x^5sin(2x+5) d x d ∫ 3 x ( t 5 s i n ( 2 t + 5 ) ) d t = x 5 s i n ( 2 x + 5 )
d d x ∫ x 1 ( u 2 l n ∣ u ∣ + t a n u ) d u = − d d x ∫ 1 x ( u 2 l n ∣ u ∣ + t a n u ) d u = − ( x 2 l n ∣ x ∣ + t a n x ) \frac{d}{dx}\int^1_x (u^2ln|u|+tanu)du = -\frac{d}{dx} \int^x_1(u^2ln|u|+tanu)du = -(x^2ln|x|+tanx) d x d ∫ x 1 ( u 2 l n ∣ u ∣ + t a n u ) d u = − d x d ∫ 1 x ( u 2 l n ∣ u ∣ + t a n u ) d u = − ( x 2 l n ∣ x ∣ + t a n x )
∫ 2 x x s i n y d y = x ∫ 2 x s i n y d y \int^x_{\sqrt{2}}xsinydy = x\int^x_{\sqrt{2}}sinydy ∫ 2 x x s i n y d y = x ∫ 2 x s i n y d y ⇒ d d x ∫ 2 x x s i n y d y = d d x x ∫ 2 x s i n y d y = ∫ 2 x s i n y d y + x s i n x = − c o s x + c o s 2 + x s i n x \Rightarrow \frac{d}{dx}\int^x_{\sqrt{2}}xsinydy = \frac{d}{dx}x\int^x_{\sqrt{2}}sinydy = \int^x_{\sqrt{2}}sinydy+xsinx = -cosx+cos\sqrt{2}+xsinx ⇒ d x d ∫ 2 x x s i n y d y = d x d x ∫ 2 x s i n y d y = ∫ 2 x s i n y d y + x s i n x = − c o s x + c o s 2 + x s i n x
# ThmIf f f f is continuous on [ a , b ] [a,b] [ a , b ] ,∫ a b f ( x ) d x = F ( b ) − F ( a ) \int^b_af(x)dx = F(b) - F(a) ∫ a b f ( x ) d x = F ( b ) − F ( a ) ,where F ( x ) F(x) F ( x ) is an antiderivative of f f f .
# Example∫ f ′ ( x ) g ( x ) d x = f ( x ) g ( x ) − ∫ f ( x ) g ′ ( x ) d x \int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx ∫ f ′ ( x ) g ( x ) d x = f ( x ) g ( x ) − ∫ f ( x ) g ′ ( x ) d x ⇒ ∫ a b f ′ ( x ) g ( x ) d x = f ( x ) g ( x ) ∣ a b − ∫ a b f ( x ) g ′ ( x ) d x = f ( b ) g ( b ) − f ( a ) g ( a ) − ∫ a b f ( x ) g ′ ( x ) d x \Rightarrow \int^b_a f'(x)g(x)dx = f(x)g(x) |^b_a - \int^b_a f(x)g'(x)dx = f(b)g(b) -f(a)g(a) - \int^b_a f(x)g'(x)dx ⇒ ∫ a b f ′ ( x ) g ( x ) d x = f ( x ) g ( x ) ∣ a b − ∫ a b f ( x ) g ′ ( x ) d x = f ( b ) g ( b ) − f ( a ) g ( a ) − ∫ a b f ( x ) g ′ ( x ) d x .
# Applicationd d x ∫ a g ( x ) f ( t ) d t = f ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx}\int^{g(x)}_a f(t)dt = f(g(x)) \cdot g'(x) d x d ∫ a g ( x ) f ( t ) d t = f ( g ( x ) ) ⋅ g ′ ( x ) d d x ∫ h ( x ) g ( x ) f ( t ) d t = f ( g ( x ) ) ⋅ g ′ ( x ) − f ( h ( x ) ) ⋅ h ′ ( x ) \frac{d}{dx}\int^{g(x)}_{h(x)} f(t)dt = f(g(x)) \cdot g'(x) - f(h(x))\cdot h'(x) d x d ∫ h ( x ) g ( x ) f ( t ) d t = f ( g ( x ) ) ⋅ g ′ ( x ) − f ( h ( x ) ) ⋅ h ′ ( x ) d d x ∫ a x 2 s i n t d t \frac{d}{dx}\int^{x^2}_a sint dt d x d ∫ a x 2 s i n t d t d d x ∫ s i n x x 2 l n ∣ t 2 + 2 t ∣ d t \frac{d}{dx}\int^{x^2}_{sinx} ln|t^2+2t|dt d x d ∫ s i n x x 2 l n ∣ t 2 + 2 t ∣ d t lim x → 0 ∫ 0 x 2 1 x 6 s i n t 2 d t \lim_{x\to 0}\int^{x^2}_0 \frac{1}{x^6}sint^2dt lim x → 0 ∫ 0 x 2 x 6 1 s i n t 2 d t d d x ∫ a x 2 s i n t d t = s i n x 2 ⋅ d d x x 2 = 2 x s i n x 2 \frac{d}{dx}\int^{x^2}_a sint dt = sinx^2 \cdot \frac{d}{dx}x^2 = 2xsinx^2 d x d ∫ a x 2 s i n t d t = s i n x 2 ⋅ d x d x 2 = 2 x s i n x 2
d d x ∫ s i n x x 2 l n ∣ t 2 + 2 t ∣ d t = l n ∣ x 2 + 2 ( x 2 ) 2 ∣ ⋅ d d x x 2 − l n ∣ s i n x + 2 s i n 2 x ∣ ⋅ d d x s i n x = 2 x l n ∣ x 2 + 2 x 4 ∣ − c o s x l n ∣ s i n x + 2 s i n 2 x ∣ = l n ∣ x 2 + 2 x 4 ∣ 2 x − l n ∣ s i n x + 2 s i n 2 x ∣ c o s x = l n ∣ l n ∣ x 2 + 2 x 4 ∣ 2 x l n ∣ s i n x + 2 s i n 2 x ∣ c o s x ∣ \frac{d}{dx}\int^{x^2}_{sinx} ln|t^2+2t|dt = ln|x^2+2(x^2)^2| \cdot \frac{d}{dx} x^2 - ln|sinx + 2sin^2x| \cdot \frac{d}{dx} sinx = 2xln|x^2+2x^4| - cosxln|sinx + 2sin^2x| = ln|x^2+2x^4|^{2x} - ln|sinx + 2sin^2x|^{cosx} = ln|\frac{ln|x^2+2x^4|^{2x}}{ln|sinx + 2sin^2x|^{cosx}}| d x d ∫ s i n x x 2 l n ∣ t 2 + 2 t ∣ d t = l n ∣ x 2 + 2 ( x 2 ) 2 ∣ ⋅ d x d x 2 − l n ∣ s i n x + 2 s i n 2 x ∣ ⋅ d x d s i n x = 2 x l n ∣ x 2 + 2 x 4 ∣ − c o s x l n ∣ s i n x + 2 s i n 2 x ∣ = l n ∣ x 2 + 2 x 4 ∣ 2 x − l n ∣ s i n x + 2 s i n 2 x ∣ c o s x = l n ∣ l n ∣ s i n x + 2 s i n 2 x ∣ c o s x l n ∣ x 2 + 2 x 4 ∣ 2 x ∣
lim x → 0 ∫ 0 x 2 1 x 6 s i n t 2 d t = lim x → 0 ∫ 0 x 2 s i n t 2 d t x 6 = lim x → 0 s i n x 4 ⋅ 2 x 6 x 5 = lim x → 0 c o s x 4 ⋅ 4 x 3 12 x 3 = 1 3 \lim_{x\to 0}\int^{x^2}_0 \frac{1}{x^6}sint^2dt = \lim_{x \to 0} \frac{\int^{x^2}_0 sint^2 dt}{x^6} = \lim_{x \to 0}\frac{sinx^4 \cdot 2x}{6x^5} = \lim_{x \to 0} \frac{cosx^4 \cdot 4x^3}{12x^3} = \frac{1}{3} lim x → 0 ∫ 0 x 2 x 6 1 s i n t 2 d t = lim x → 0 x 6 ∫ 0 x 2 s i n t 2 d t = lim x → 0 6 x 5 s i n x 4 ⋅ 2 x = lim x → 0 1 2 x 3 c o s x 4 ⋅ 4 x 3 = 3 1 .
# ThmIf f f f is continuous on [ a , b ] [a,b] [ a , b ] , then
d d x ∫ a x f ( t ) d t = f ( x ) \frac{d}{dx}\int^x_af(t) dt = f(x) d x d ∫ a x f ( t ) d t = f ( x ) ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int^b_af(x)dx = F(b) - F(a) ∫ a b f ( x ) d x = F ( b ) − F ( a ) if F ′ ( x ) = f ( x ) F'(x) = f(x) F ′ ( x ) = f ( x ) # Reference蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109