• Area
  • Properties of Integrals
  • Fundamental Theorem of Calculus

# Area

曲線下的面積 (只考慮[a,b][a,b] 上的非負函數)

Let S={(x,y)axb,0yf(x)}.S = \{(x,y) | a \le x \le b , 0 \le y \le f(x) \}.
Divide [a,b][a,b] into nn subintervals:
[x0,x1],[x1,x2]...[xn1,xn],wherex0=a,xn=b[x_0,x_1],[x_1,x_2]...[x_{n-1},x_n], \; where \; x_0 =a, x_n = b
Use a rectangle to approximate each SiS_i.Define that:

  • Un=f(x1)Δx1+f(x2)Δx2+...+f(xn)Δxn=i=1nf(xi)ΔxiU_n = f(x_1)\Delta x_1+f(x_2)\Delta x_2+...+f(x_n)\Delta x_n = \sum^n_{i=1}f(x_i)\Delta x_i
  • Rn=f(x0)Δx1+f(x1)Δx2+...+f(xn1)Δxn=i=1nf(xi1)ΔxiR_n = f(x_0)\Delta x_1+f(x_1)\Delta x_2+...+f(x_{n-1})\Delta x_n = \sum^n_{i=1}f(x_{i-1})\Delta x_i
    whereΔxn=xixi1i{1,2,...,n}.where \Delta x_n = x_i - x_{i-1} \forall i \in \{ 1,2,...,n \}.

# Define

If f:[a,b]R+{0}f: [a,b] \to \mathbb{R^+} \cup \{ 0 \} is continuous,
then A=limnRn=limni=1nf(xi)ΔxiA = \lim_{n \to \infty}R_n = \lim_{n \to \infty} \sum^n_{i=1}f(x_i)\Delta x_i
then A=limnLn=limni=1nf(xi1)ΔxiA = \lim_{n \to \infty}L_n = \lim_{n \to \infty} \sum^n_{i=1}f(x_{i-1})\Delta x_i

# Partition

P={a=x0,x1,x2,...,xn=b}P = \{ a = x_0, x_1,x_2,...,x_n =b \} is a partition of [a,b][a,b].

  1. 等分: Δxi=ban\Delta x_i = \frac{b-a}{n}.
  2. 不等分: Ex.x0=a,x1=ar,...,xn=arn=b,r=banab0,a0x_0 =a,x_1=ar,...,x_n = ar^n = b, r = \sqrt[n]{\frac{b}{a} } ab \ge 0 , a \neq 0
    P={a,ar,ar2,...,arn},Δxi=xixi1=ariari1.P = \{ a,ar,ar^2,...,ar^n \},\Delta x_i =x_i - x_{i-1} = ar^i - ar^{i-1}.

# Example

P={0=x0,x1=12n,x2=12n1,...,xn1=14,xn=12}.P = \{0 = x_0,x_1 = \frac{1}{2^n}, x_2 = \frac{1}{2^{n-1}},...,x_{n-1} = \frac{1}{4}, x_n = \frac{1}{2} \}.
Δxi=xixi1=12n+1x12nx,P=1214=14.\Delta x_i = x_i - x_{i-1} = \frac{1}{2^{n+1-x}} - \frac{1}{2^{n-x}}, \left \| P \right \| = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.

Remark
  1. We want to find a partition of [a,b][a,b] such that P0\left \| P \right \| \to 0 implies nn \to \infty.
  2. If nn \to \infty,then P0\left \| P \right \| \to 0 不一定成立

# Example

f(x)=x2f(x) = x^2 on [a,b][a,b]. Find AA.

  1. Taking a partition of P={a=x0,x1,...,xn=b}P = \{ a = x_0, x_1,...,x_n=b \},where xi=a+bani,Δx=banx_i = a + \frac{b-a}{n}i,\Delta x = \frac{b-a}{n}.
  2. Ln=f(x0)Δx+f(x1)Δx+...+f(xn1)Δx=bani=0n1f(xi)=bani=0n1{a2+2a(ba)ni+(ba)2n2i2}=a2(ba)+2a(ba)2n2n(n1)2+(ba)3n3n(n1)(2n1)6=a2(ba)+a(ba)2(11n)+(ba)36(11n)(21n)L_n = f(x_0)\Delta x+f(x_1)\Delta x+...+f(x_{n-1})\Delta x = \frac{b-a}{n} \sum^{n-1}_{i=0}f(x_{i}) \\= \frac{b-a}{n} \sum^{n-1}_{i=0} \{ a^2 + 2\frac{a(b-a)}{n}i + \frac{(b-a)^2}{n^2}i^2 \} = a^2(b-a) + \frac{2a(b-a)^2}{n^2} \cdot \frac{n(n-1)}{2} + \frac{(b-a)^3}{n^3}\cdot \frac{n(n-1)(2n-1)}{6} \\= a^2(b-a) + a(b-a)^2(1-\frac{1}{n})+\frac{(b-a)^3}{6}(1-\frac{1}{n})(2-\frac{1}{n})
  3. A=limnLn=a2(ba)+a(ba)2+13(ba)3A = \lim_{n \to \infty}L_n = a^2(b-a)+a(b-a)^2 + \frac{1}{3}(b-a)^3

# Define

UnU_n,上和: Taking xi[xi1,xi]x_i* \in [x_{i-1},x_i] such that ff has a maximum f(xi)on[xi1,xi]f(x_i*) on [x_{i-1},x_i],then i=1nf(xi)Δxi\sum_{i=1}^{n}f(x_i*)\Delta x_i is called the upper sum of ff on [a,b][a,b] with a partition P={x0=a,x1,...,xn=b}P = \{ x_0 =a,x_1,...,x_n =b \}.

LnL_n,下和: Taking xi[xi1,xi]x_i* \in [x_{i-1},x_i] such that ff has a minimum f(xi)on[xi1,xi]f(x_i*) on [x_{i-1},x_i],then i=1nf(xi)Δxi\sum_{i=1}^{n}f(x_i*)\Delta x_i is called the lower sum of ff on [a,b][a,b] with a partition P={x0=a,x1,...,xn=b}P = \{ x_0 =a,x_1,...,x_n =b \}.

# The Definite Integral

Divide [a,b][a,b] into nn subintervals (子區間) of each width Δx=ban\Delta x = \frac{b-a}{n}:
P={x0=a,x1,...,xn=b}P = \{ x_0 =a,x_1,...,x_n = b \}.
Let xix_i* be a sample point of subinterval [xi1,xi][x_{i-1},x_i] for all i=1,2,...,ni = 1,2,...,n
The definite integral of ff from aa to bb is defined by abf(x)dx=limni=1nf(xi)Δx\int^b_af(x)dx = \lim_{n\to \infty}\sum_{i=1}^nf(x_i*)\Delta x if the limit exists.
Moreover, we say that ff is integrable on [a,b][a,b].

# Example

0π2sinxdx=?\int^{\frac{\pi}{2}}_0 sinxdx = ?

Taking xi=0+π20ni,i={1,2,3,...,n},Δx=π2nx_i = 0+\frac{\frac{\pi}{2}-0}{n}\cdot i, \; i = \{ 1,2,3,...,n\}, \; \Delta x = \frac{\pi}{2n}.

Let the right sum be i=1nf(xi)Δx=i=1nπ2nsin(π2ni)=Rn\sum_{i=1}^nf(x_i)\Delta x = \sum_{i=1}^n \frac{\pi}{2n}sin(\frac{\pi}{2n}i) = R_n
2sin(π4n)sin(π2ni)=cos(π4nπ2ni)cos(π4n+π2ni)=cos(π(12i)4n)cos(π(1+2i)4n)\because 2sin(\frac{\pi}{4n})sin(\frac{\pi}{2n}i) = cos (\frac{\pi}{4n} - \frac{\pi}{2n}i) - cos (\frac{\pi}{4n} + \frac{\pi}{2n}i) = cos(\frac{\pi(1-2i)}{4n}) - cos(\frac{\pi(1+2i)}{4n})
sin(π2ni)=12sin(π4n)(cos(π(12i)4n)cos(π(1+2i)4n))\Rightarrow sin(\frac{\pi}{2n}i) = \frac{1}{2sin(\frac{\pi}{4n})}(cos(\frac{\pi(1-2i)}{4n}) - cos(\frac{\pi(1+2i)}{4n}))
Rn=12sin(π4n)π2ni=1n(cos(π(12i)4n)cos(π(1+2i)4n))=π4nsin(π4n){(cosπ4ncos3π4n)+(cos3π4ncos5π4n)+...+(cos(2n1)π4ncos(2n+1)π4n)}=π4nsin(π4n)(cos(π4n)cos(π4(2+1n))).\therefore R_n = \frac{1}{2sin(\frac{\pi}{4n})} \cdot \frac{\pi}{2n} \sum^n_{i=1}(cos(\frac{\pi(1-2i)}{4n}) - cos(\frac{\pi(1+2i)}{4n})) = \frac{\frac{\pi}{4n}}{sin(\frac{\pi}{4n})} \{ (cos\frac{\pi}{4n} - cos\frac{3\pi}{4n})+(cos\frac{3\pi}{4n} - cos\frac{5\pi}{4n}) +...+(cos\frac{(2n-1)\pi}{4n} - cos\frac{(2n+1)\pi}{4n}) \} = \frac{\frac{\pi}{4n}}{sin(\frac{\pi}{4n})} (cos(\frac{\pi}{4n}) - cos(\frac{\pi}{4}(2+\frac{1}{n})) ).
limnRn={10}=1\Rightarrow \lim_{n \to \infty}R_n = \{ 1-0 \} =1.

# Example

  1. limn15+25+...+n5n6\lim_{n \to \infty} \frac{1^5+2^5+...+n^5}{n^6}.
  2. limn1n{1+1n+1+2n+...+1+nn}\lim_{n\to \infty}\frac{1}{n} \{ \sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}}+...+\sqrt{1 + \frac{n}{n}} \}.
  3. limn{11+n+12+n+...+12n}\lim_{n \to \infty} \{ \frac{1}{1+n} + \frac{1}{2+n} + ... + \frac{1}{2n} \}.

limn15+25+...+n5n6=limn1n{(1n)5+(2n)5+(3n)5+...+(nn)5}=limn1ni=1n(in)5=limni=1n(in)51n=limni=1nf(xi)Δx=01x5dx=16x6x=0x=1=16\lim_{n \to \infty} \frac{1^5+2^5+...+n^5}{n^6} = \lim_{n \to \infty} \frac{1}{n} \{ (\frac{1}{n})^5 + (\frac{2}{n})^5 +(\frac{3}{n})^5 + ... + (\frac{n}{n})^5 \} \\= \lim_{n \to \infty} \frac{1}{n}\sum^n_{i=1}(\frac{i}{n})^5 = \lim_{n \to \infty} \sum^n_{i=1}(\frac{i}{n})^5\frac{1}{n} = \lim_{n \to \infty} \sum^n_{i=1}f(x_i)\Delta x \\= \int^1_0 x^5 dx = \frac{1}{6}x^6|^{x=1}_{x=0} = \frac{1}{6}.

limn1n{1+1n+1+2n+...+1+nn}=limni=1n(1+in1n)\lim_{n\to \infty}\frac{1}{n} \{ \sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}}+...+\sqrt{1 + \frac{n}{n}} \} = \lim_{n\to \infty} \sum^n_{i=1}(\sqrt{1+\frac{i}{n}} \cdot \frac{1}{n})

Let Δx=10n,xi=0+in,f(x)=1+x\Delta x = \frac{1-0}{n}, x_i = 0+\frac{i}{n} , f(x) = \sqrt{1+x}
limni=1n(1+in1n)=011+xdx=23(1+x)3201=34223\lim_{n\to \infty} \sum^n_{i=1}(\sqrt{1+\frac{i}{n}} \cdot \frac{1}{n}) = \int^1_0\sqrt{1+x}dx = \frac{2}{3}(1+x)^{\frac{3}{2}}|^1_0 = \frac{3}{4}\sqrt{2} - \frac{2}{3}.

Let Δx=21n,xi=1+in,f(x)=x\Delta x = \frac{2-1}{n}, x_i = 1+\frac{i}{n} , f(x) = \sqrt{x}
limni=1n(1+in1n)=12xdx=23(x)3212=34223\lim_{n\to \infty} \sum^n_{i=1}(\sqrt{1+\frac{i}{n}} \cdot \frac{1}{n}) = \int^2_1\sqrt{x}dx = \frac{2}{3}(x)^{\frac{3}{2}}|^2_1 = \frac{3}{4}\sqrt{2} - \frac{2}{3}.

limn{11+n+12+n+...+12n}=limn1n{11n+1+12n+1+...+1nn+1}=limni=1n(1n11+2n)\lim_{n \to \infty} \{ \frac{1}{1+n} + \frac{1}{2+n} + ... + \frac{1}{2n} \} = \lim_{n \to \infty} \frac{1}{n} \{ \frac{1}{\frac{1}{n}+1} + \frac{1}{\frac{2}{n}+1} + ... +\frac{1}{\frac{n}{n}+1} \} = \lim_{n \to \infty}\sum^n_{i=1}(\frac{1}{n} \cdot \frac{1}{1+\frac{2}{n}})
Let Δx=10n,xi=in,f(x)=11+x\Delta x = \frac{1-0}{n} , x_i = \frac{i}{n}, f(x) = \frac{1}{1+x}.
0111+xdx=ln1+xx=0x=1=ln2\int^1_0 \frac{1}{1+x} dx = ln|1+x| |^{x=1}_{x=0} = ln2

# Example

abxqdx,q1,qQ,0<a<b\int^b_a x^q dx, q \neq 1, q \in \mathbb{Q}, 0<a<b

Let r=(ba)1nr = (\frac{b}{a})^\frac{1}{n} and xi=ari,i=0,1,...,n,Δxi=ari1(r1)x_i = ar^i, i = 0,1,...,n, \Delta x_i = ar^{i-1}(r-1).
P=x0=a,x1,x2,...xn=bP = {x_0 = a,x_1,x_2,...x_n=b}.
Rn=i=1nf(xi1)Δxi=i=1n(xi1)qari1(r1)=i=1n(ari1)qari1(r1)=aq+1(r1)i=1nrq(i1)ri1=aq+1(r1)i=1nr(q+1)(i1)=aq+1(r1)1(r(q+1)n1)rq+11=r1rq+11aq+1((ba)q+11)=r1rq+11(bq+1aq+1)R_n = \sum^n_{i=1}f(x_{i-1})\Delta x_i = \sum^n_{i=1}(x_{i-1})^q \cdot ar^{i-1}(r-1) = \sum^n_{i=1}(ar^{i-1})^q \cdot ar^{i-1}(r-1) \\= a^{q+1}(r-1) \sum^n_{i=1}r^{q(i-1)}r^{i-1} = a^{q+1}(r-1) \sum^n_{i=1}r^{(q+1)(i-1)} = a^{q+1}(r-1)\frac{1\cdot (r^{(q+1)n}-1)}{r^{q+1}-1} \\= \frac{r-1}{r^{q+1}-1}a^{q+1}((\frac{b}{a})^{q+1}-1) = \frac{r-1}{r^{q+1}-1} (b^{q+1} - a^{q+1})
ddrq=1rq+1=q+1\because \frac{d}{dr}|_{q=1}r^{q+1} = q+1
limr1rq+11r1=ddrq=1rq+1=q+1\therefore \lim_{r \to 1} \frac{r^{q+1}-1}{r-1} = \frac{d}{dr}|_{q=1}r^{q+1} = q+1

limnRn=limni=1nf(xi1)Δxi=limnr1rq+11(bq+1aq+1)=limr1r1rq+11(bq+1aq+1)=1q+1(bq+1aq+1)=abxqdx\Rightarrow \lim_{n \to \infty}R_n = \lim_{n \to \infty}\sum^n_{i=1}f(x_{i-1})\Delta x_i = \lim_{n \to \infty}\frac{r-1}{r^{q+1}-1} (b^{q+1} - a^{q+1}) = \lim_{r \to 1}\frac{r-1}{r^{q+1}-1} (b^{q+1} - a^{q+1}) = \frac{1}{q+1}(b^{q+1}-a^{q+1}) = \int^b_a x^q dx.

# Properties of Integrals

  1. abf(x)dx\int^b_af(x)dx is a real number.
  2. abf(x)dx=abf(y)dy=abf(t)dt\int^b_af(x)dx = \int^b_af(y)dy = \int^b_af(t)dt
  3. aaf(x)dx=0\int^a_af(x)dx = 0
  4. abf(x)dx=baf(x)dx\int^b_af(x)dx = -\int^a_bf(x)dx
  5. abf(x)dx=acf(x)dx+cbf(x)dx\int^b_af(x)dx = \int^c_af(x)dx + \int^b_cf(x)dx (cRc \in \mathbb{R})
  6. abkdx=k(ba)\int^b_a k dx = k(b-a)
  7. ab(kf±hg)dx=kabf(x)dx±habg(x)dx\int^b_a(kf \pm hg)dx = k\int^b_af(x)dx \pm h\int^b_ag(x)dx
  8. abf(x)dxabf(x)dxabf(x)dx\int^b_af(x)dx \le |\int^b_af(x)dx| \le \int^b_a|f(x)|dx
  9. If ff is odd, then aaf(x)dx=0\int^a_{-a}f(x)dx = 0
    If ff is even, then aaf(x)dx=20af(x)dx\int^a_{-a}f(x)dx = 2\int^a_0f(x)dx

# Fundamental Theorem of Calculus

# Thm

If ff is continuous on [a,b][a,b], then g(x)=axf(t)dt,axbg(x)= \int^x_a f(t)dt ,a\le x \le b is also continuous on [a,b][a,b] and differentiable on (a,b)(a,b) and g(x)=f(x)g'(x) = f(x).
Moreover, ddxaxf(t)dt=f(x)\frac{d}{dx}\int^x_af(t)dt = f(x).

# Example

  1. ddx3x(t5sin(2t+5))dt\frac{d}{dx}\int^x_3 (t^5sin(2t+5))dt
  2. ddxx1(u2lnu+tanu)du\frac{d}{dx}\int^1_x (u^2ln|u|+tanu)du
  3. Find the derivative of 2xxsinydy\int^x_{\sqrt{2}}xsinydy

ddx3x(t5sin(2t+5))dt=x5sin(2x+5)\frac{d}{dx}\int^x_3 (t^5sin(2t+5))dt = x^5sin(2x+5)

ddxx1(u2lnu+tanu)du=ddx1x(u2lnu+tanu)du=(x2lnx+tanx)\frac{d}{dx}\int^1_x (u^2ln|u|+tanu)du = -\frac{d}{dx} \int^x_1(u^2ln|u|+tanu)du = -(x^2ln|x|+tanx)

2xxsinydy=x2xsinydy\int^x_{\sqrt{2}}xsinydy = x\int^x_{\sqrt{2}}sinydy
ddx2xxsinydy=ddxx2xsinydy=2xsinydy+xsinx=cosx+cos2+xsinx\Rightarrow \frac{d}{dx}\int^x_{\sqrt{2}}xsinydy = \frac{d}{dx}x\int^x_{\sqrt{2}}sinydy = \int^x_{\sqrt{2}}sinydy+xsinx = -cosx+cos\sqrt{2}+xsinx

# Thm

If ff is continuous on [a,b][a,b],abf(x)dx=F(b)F(a)\int^b_af(x)dx = F(b) - F(a),where F(x)F(x) is an antiderivative of ff.

# Example

f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx
abf(x)g(x)dx=f(x)g(x)ababf(x)g(x)dx=f(b)g(b)f(a)g(a)abf(x)g(x)dx\Rightarrow \int^b_a f'(x)g(x)dx = f(x)g(x) |^b_a - \int^b_a f(x)g'(x)dx = f(b)g(b) -f(a)g(a) - \int^b_a f(x)g'(x)dx.

# Application

  1. ddxag(x)f(t)dt=f(g(x))g(x)\frac{d}{dx}\int^{g(x)}_a f(t)dt = f(g(x)) \cdot g'(x)
  2. ddxh(x)g(x)f(t)dt=f(g(x))g(x)f(h(x))h(x)\frac{d}{dx}\int^{g(x)}_{h(x)} f(t)dt = f(g(x)) \cdot g'(x) - f(h(x))\cdot h'(x)
  1. ddxax2sintdt\frac{d}{dx}\int^{x^2}_a sint dt
  2. ddxsinxx2lnt2+2tdt\frac{d}{dx}\int^{x^2}_{sinx} ln|t^2+2t|dt
  3. limx00x21x6sint2dt\lim_{x\to 0}\int^{x^2}_0 \frac{1}{x^6}sint^2dt

ddxax2sintdt=sinx2ddxx2=2xsinx2\frac{d}{dx}\int^{x^2}_a sint dt = sinx^2 \cdot \frac{d}{dx}x^2 = 2xsinx^2

ddxsinxx2lnt2+2tdt=lnx2+2(x2)2ddxx2lnsinx+2sin2xddxsinx=2xlnx2+2x4cosxlnsinx+2sin2x=lnx2+2x42xlnsinx+2sin2xcosx=lnlnx2+2x42xlnsinx+2sin2xcosx\frac{d}{dx}\int^{x^2}_{sinx} ln|t^2+2t|dt = ln|x^2+2(x^2)^2| \cdot \frac{d}{dx} x^2 - ln|sinx + 2sin^2x| \cdot \frac{d}{dx} sinx = 2xln|x^2+2x^4| - cosxln|sinx + 2sin^2x| = ln|x^2+2x^4|^{2x} - ln|sinx + 2sin^2x|^{cosx} = ln|\frac{ln|x^2+2x^4|^{2x}}{ln|sinx + 2sin^2x|^{cosx}}|

limx00x21x6sint2dt=limx00x2sint2dtx6=limx0sinx42x6x5=limx0cosx44x312x3=13\lim_{x\to 0}\int^{x^2}_0 \frac{1}{x^6}sint^2dt = \lim_{x \to 0} \frac{\int^{x^2}_0 sint^2 dt}{x^6} = \lim_{x \to 0}\frac{sinx^4 \cdot 2x}{6x^5} = \lim_{x \to 0} \frac{cosx^4 \cdot 4x^3}{12x^3} = \frac{1}{3}.

# Thm

If ff is continuous on [a,b][a,b], then

  1. ddxaxf(t)dt=f(x)\frac{d}{dx}\int^x_af(t) dt = f(x)
  2. abf(x)dx=F(b)F(a)\int^b_af(x)dx = F(b) - F(a) if F(x)=f(x)F'(x) = f(x)

# Reference

  • 蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109
更新於 閱讀次數

用實際行動犒賞爆肝的我😀

Zrn Ye LinePay

LinePay