Curves Defined by Parametric Equations Calculus with Parametric Curves Polar Coordinates # Curves Defined by Parametric Equations# DefineParmetric equations are equation such that x x x and y y y are both funtions of a third variable t t t : x = f ( t ) , y = g ( t ) , α ≤ t ≤ β x = f(t), y = g(t) , \alpha \le t \le \beta x = f ( t ) , y = g ( t ) , α ≤ t ≤ β Each t t t determines a point ( x , y ) (x,y) ( x , y ) . As t t t varies, ( x , y ) = ( f ( t ) , g ( t ) ) (x,y) = (f(t),g(t)) ( x , y ) = ( f ( t ) , g ( t ) ) varies and traces out a curve, which call a parametic curve.
C y c l o i d : { x = r ( θ − s i n θ ) y = r ( 1 − c o s θ ) θ ∈ R Cycloid: \left\{\begin{matrix} x = r(\theta-sin\theta)\\ y = r(1-cos\theta) \end{matrix}\right. \theta \in \mathbb{R} C y c l o i d : { x = r ( θ − s i n θ ) y = r ( 1 − c o s θ ) θ ∈ R .
Sketch and identify curve defined by x = t 2 − 2 t x=t^2-2t x = t 2 − 2 t and y = t + 1 y=t+1 y = t + 1
∵ t = y − 1 ∴ x = ( y − 1 ) 2 − 2 ( y − 1 ) = y 2 − 4 y + 3 \because t = y-1 \therefore x = (y-1)^2 - 2(y-1) = y^2-4y+3 ∵ t = y − 1 ∴ x = ( y − 1 ) 2 − 2 ( y − 1 ) = y 2 − 4 y + 3 ⇒ x = ( y − 2 ) 2 − 1 \Rightarrow x = (y-2)^2 - 1 ⇒ x = ( y − 2 ) 2 − 1 頂點為( − 1 , 2 ) (-1,2) ( − 1 , 2 ) Let y 2 − 4 y + 3 = 0 , y = 1 o r 3 y^2-4y+3 = 0, y = 1 or 3 y 2 − 4 y + 3 = 0 , y = 1 o r 3 t = 0 , x = 0 , y = 1 t = 0, x = 0,y = 1 t = 0 , x = 0 , y = 1 , t = 1 , x = − 1 , y = 2 t = 1, x = -1, y=2 t = 1 , x = − 1 , y = 2
# Calculus with Parametric Curves# Tangent LineTangent Line for x = f ( t ) , y = g ( t ) x=f(t), y = g(t) x = f ( t ) , y = g ( t ) , we need
切點座標: ( x , y ) = ( f ( t ) , g ( t ) ) (x,y) = (f(t),g(t)) ( x , y ) = ( f ( t ) , g ( t ) ) 切線斜率: d y d x = d y d t d x d t \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} d x d y = d t d x d t d y if d x d t ≠ 0 \frac{dx}{dt} \neq 0 d t d x = 0 ⇒ \Rightarrow ⇒ The tangent line is y − g ( t ) = d y d x ∣ t = t 0 ( x − f ( t 0 ) ) y-g(t) = \frac{dy}{dx} |_{t = t_0} (x-f(t_0)) y − g ( t ) = d x d y ∣ t = t 0 ( x − f ( t 0 ) ) Remark d y d x = d y d t d x d t \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} d x d y = d t d x d t d y
d x d t \frac{dx}{dt} d t d x 、d y d t \frac{dy}{dt} d t d y 不同時為 0:d y d t = 0 \frac{dy}{dt} = 0 d t d y = 0 ,有水平切線。d x d t = 0 \frac{dx}{dt} = 0 d t d x = 0 ,有垂直切線。d x d t \frac{dx}{dt} d t d x 、d y d t \frac{dy}{dt} d t d y 同時為 0,則什麼都有可能。Given parametric equation C : x = t 3 C: x = t^3 C : x = t 3 ,y = t 3 − 3 t y = t^3-3t y = t 3 − 3 t
Show that C C C has two tangent lines at ( 3 , 0 ) (3,0) ( 3 , 0 ) and find their equations. Find points on C C C where tangent is horizontal or vertical. Discuss the concavity of C C C . 先確認 ( 3 , 0 ) (3,0) ( 3 , 0 ) 在 C C C 上,⇒ t = ± 3 \Rightarrow t = \pm \sqrt{3} ⇒ t = ± 3 ∵ d y d x = d y d t d x d t = 3 t 2 − 3 2 t = 3 2 t − 3 2 t − 1 \because \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2-3}{2t} = \frac{3}{2}t - \frac{3}{2}t^{-1} ∵ d x d y = d t d x d t d y = 2 t 3 t 2 − 3 = 2 3 t − 2 3 t − 1 .∴ d y d x ∣ t = 3 = 3 \therefore \frac{dy}{dx} |_{t = \sqrt{3}} = \sqrt{3} ∴ d x d y ∣ t = 3 = 3 and d y d x ∣ t = − 3 = − 3 \frac{dy}{dx} |_{t = -\sqrt{3}} = -\sqrt{3} d x d y ∣ t = − 3 = − 3 ⇒ \Rightarrow ⇒ the tangent lines are y = 3 ( x − 3 ) y = \sqrt{3}(x-3) y = 3 ( x − 3 ) and y = − 3 ( x − 3 ) y = -\sqrt{3}(x-3) y = − 3 ( x − 3 )
d y d t = 0 ⇒ 3 t 2 − 3 = 0 ⇒ t = ± 1 \frac{dy}{dt} = 0 \Rightarrow 3t^2 - 3 = 0 \Rightarrow t = \pm 1 d t d y = 0 ⇒ 3 t 2 − 3 = 0 ⇒ t = ± 1 水平切線: t = 1 : ( 1 , − 2 ) t = 1 : (1,-2) t = 1 : ( 1 , − 2 ) 、t = − 1 : ( 1 , 2 ) t = -1 : (1,2) t = − 1 : ( 1 , 2 ) d x d t = 0 ⇒ 2 t = 0 ⇒ t = 0 \frac{dx}{dt} = 0 \Rightarrow 2t = 0 \Rightarrow t = 0 d t d x = 0 ⇒ 2 t = 0 ⇒ t = 0 垂直切線: t = 0 : ( 0 , 0 ) t = 0 : (0,0) t = 0 : ( 0 , 0 )
d 2 y d x 2 = d d t d x d t = 3 2 + 3 2 t − 2 2 t = 3 4 ( 1 t + 1 t 3 ) \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}}{\frac{dx}{dt}} = \frac{\frac{3}{2}+ \frac{3}{2}t^{-2}}{2t}= \frac{3}{4}(\frac{1}{t} + \frac{1}{t^3}) d x 2 d 2 y = d t d x d t d = 2 t 2 3 + 2 3 t − 2 = 4 3 ( t 1 + t 3 1 )
d 2 y d x 2 > 0 \frac{d^2y}{dx^2}>0 d x 2 d 2 y > 0 if t > 0 t>0 t > 0 ,即 t > 0 t>0 t > 0 時凹口向上d 2 y d x 2 < 0 \frac{d^2y}{dx^2}<0 d x 2 d 2 y < 0 if t < 0 t<0 t < 0 ,即 t < 0 t<0 t < 0 時凹口向下
# AreaConsider x = f ( t ) , y = g ( t ) x = f(t),y = g(t) x = f ( t ) , y = g ( t ) and α ≤ t ≤ β \alpha \le t \le \beta α ≤ t ≤ β .A = ∫ a b F ( x ) d x = ∫ β α g ( t ) d ( f ( t ) ) = ∫ β α g ( t ) f ′ ( t ) d t A = \int^b_a F(x) dx = \int^{\alpha}_{\beta}g(t)d(f(t)) = \int^{\alpha}_{\beta}g(t)f'(t)dt A = ∫ a b F ( x ) d x = ∫ β α g ( t ) d ( f ( t ) ) = ∫ β α g ( t ) f ′ ( t ) d t .
Find the area of an arch of cycloid x = r ( θ − s i n θ ) , y = r ( 1 − c o s θ ) x = r(\theta - sin\theta),y = r(1-cos \theta) x = r ( θ − s i n θ ) , y = r ( 1 − c o s θ )
A = ∫ 0 2 π g ( θ ) f ′ ( θ ) d θ = ∫ 0 2 π r ( 1 − c o s θ ) ⋅ r ( 1 − c o s θ ) d θ = r 2 ∫ 0 2 π ( 1 − c o s θ ) 2 d θ = 3 π r 2 A = \int^{2\pi}_0g(\theta)f'(\theta) d\theta = \int^{2\pi}_0 r(1-cos\theta) \cdot r(1-cos\theta)d\theta = r^2 \int^{2\pi}_0 (1-cos\theta)^2 d\theta = 3\pi r^2 A = ∫ 0 2 π g ( θ ) f ′ ( θ ) d θ = ∫ 0 2 π r ( 1 − c o s θ ) ⋅ r ( 1 − c o s θ ) d θ = r 2 ∫ 0 2 π ( 1 − c o s θ ) 2 d θ = 3 π r 2 .
# Arc LengthConsider x = f ( t ) , y = g ( t ) x = f(t),y=g(t) x = f ( t ) , y = g ( t ) and α ≤ t ≤ β \alpha \le t \le \beta α ≤ t ≤ β If f ′ f' f ′ and g ′ g' g ′ are continuous on [ α , β ] [\alpha,\beta] [ α , β ] , then L = ∫ a b 1 + ( F ′ ( x ) ) 2 d x = ∫ α β 1 + ( d y d t d x d t ) 2 d x d t ⋅ d t L = \int^b_a \sqrt{1+(F'(x))^2}dx = \int^{\beta}_{\alpha}\sqrt{1 + (\frac{\frac{dy}{dt}}{\frac{dx}{dt}})^2} \frac{dx}{dt} \cdot dt L = ∫ a b 1 + ( F ′ ( x ) ) 2 d x = ∫ α β 1 + ( d t d x d t d y ) 2 d t d x ⋅ d t ⇒ L = ∫ α β ( d x d t ) 2 + ( d y d t ) 2 d t \Rightarrow L = \int^{\beta}_\alpha \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt ⇒ L = ∫ α β ( d t d x ) 2 + ( d t d y ) 2 d t
Find the arch length of an arch of cycloid x = r ( θ − s i n θ ) , y = r ( 1 − c o s θ ) x = r(\theta - sin\theta),y = r(1-cos \theta) x = r ( θ − s i n θ ) , y = r ( 1 − c o s θ )
L = ∫ α β ( d x d θ ) 2 + ( d y d θ ) 2 d θ = ∫ 0 2 π r 2 ( 1 − c o s θ ) 2 + r 2 s i n 2 θ d θ = 8 r L = \int^{\beta}_\alpha \sqrt{(\frac{dx}{d\theta})^2 + (\frac{dy}{d\theta})^2} d\theta = \int^{2\pi}_0 \sqrt{r^2(1-cos\theta)^2 + r^2sin^2\theta} d\theta = 8r L = ∫ α β ( d θ d x ) 2 + ( d θ d y ) 2 d θ = ∫ 0 2 π r 2 ( 1 − c o s θ ) 2 + r 2 s i n 2 θ d θ = 8 r
# Surface AreaConsider C : x = f ( t ) , y = g ( t ) C:x = f(t),y=g(t) C : x = f ( t ) , y = g ( t ) and α ≤ t ≤ β \alpha \le t \le \beta α ≤ t ≤ β 對 x 軸旋轉得到的旋轉體f ′ f' f ′ 、g ′ g' g ′ are continuous on [ α , β ] [\alpha,\beta] [ α , β ] and g ( t ) ≥ 0 g(t) \ge 0 g ( t ) ≥ 0 on [ α , β ] [\alpha,\beta] [ α , β ] ⇒ \Rightarrow ⇒ the surface area is ∫ α β 2 π y ( d x d t ) 2 + ( d y d t ) 2 d t \int^{\beta}_{\alpha}2\pi y \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}dt ∫ α β 2 π y ( d t d x ) 2 + ( d t d y ) 2 d t
C : x = r c o s t , t = r s i n t , 0 ≤ t ≤ π C: x = rcost , t = rsint , 0 \le t \le \pi C : x = r c o s t , t = r s i n t , 0 ≤ t ≤ π 繞 x 軸旋轉得到球面,求此球面的表面積。
A = ∫ 0 π 2 π ( r s i n t ) ( − r s i n t ) 2 + ( r c o s t ) 2 d t = 4 π r 2 A = \int^{\pi}_0 2\pi (rsint)\sqrt{(-rsint)^2 + (rcost)^2}dt = 4\pi r^2 A = ∫ 0 π 2 π ( r s i n t ) ( − r s i n t ) 2 + ( r c o s t ) 2 d t = 4 π r 2
# Polar CoordinatesP [ r , θ ] , r , θ ∈ R P[r,\theta], r, \theta \in \mathbb{R} P [ r , θ ] , r , θ ∈ R .
r = 0 r = 0 r = 0 : 圖形為一點 (極點)r > 0 r > 0 r > 0 : ( r c o s θ , r s i n θ ) (rcos\theta,rsin\theta) ( r c o s θ , r s i n θ ) r < 0 r < 0 r < 0 : [ r , θ ] = [ ∣ r ∣ , θ + π ] [r,\theta] = [|r|,\theta + \pi] [ r , θ ] = [ ∣ r ∣ , θ + π ] # Relationship between Polar and Cartesian Coordinatesx = r c o s θ , y = r s i n θ x = rcos\theta, y = rsin\theta x = r c o s θ , y = r s i n θ , r , θ ∈ R r,\theta \in \mathbb{R} r , θ ∈ R .⇒ r 2 = x 2 + y 2 \Rightarrow r^2 = x^2+y^2 ⇒ r 2 = x 2 + y 2 , t a n θ = y x tan\theta = \frac{y}{x} t a n θ = x y .
# Calculus with Parametric Curves# Tangent Line切點: ( x , y ) = ( r c o s θ 0 , r s i n θ 0 ) = ( f ( θ 0 ) c o s θ 0 , f ( θ 0 ) s i n θ 0 ) (x,y) = (rcos\theta_0, rsin\theta_0) = (f(\theta_0)cos\theta_0, f(\theta_0)sin\theta_0) ( x , y ) = ( r c o s θ 0 , r s i n θ 0 ) = ( f ( θ 0 ) c o s θ 0 , f ( θ 0 ) s i n θ 0 ) 斜率: d y d x = d y d θ d x d θ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} d x d y = d θ d x d θ d y if d x d θ ≠ 0 \frac{dx}{d\theta} \neq 0 d θ d x = 0 Tangent Line is y − f ( θ 0 ) s i n θ 0 = d y d x ∣ θ = θ 0 ( x − f ( θ 0 ) c o s θ 0 ) y - f(\theta_0)sin\theta_0 = \frac{dy}{dx}|_{\theta = \theta_0}(x-f(\theta_0)cos\theta_0) y − f ( θ 0 ) s i n θ 0 = d x d y ∣ θ = θ 0 ( x − f ( θ 0 ) c o s θ 0 ) # AreaArea bounded by f ( θ ) f(\theta) f ( θ ) Let R R R be the region bounded by r = f ( θ ) r = f(\theta) r = f ( θ ) , θ = a \theta = a θ = a , θ = b \theta = b θ = b , where f ( θ ) ≥ 0 f(\theta) \ge 0 f ( θ ) ≥ 0 on [ a , b ] [a,b] [ a , b ] and 0 < b − a ≤ 2 π 0 < b-a \le 2\pi 0 < b − a ≤ 2 π . Then the area A A A of R R R is A = ∫ a b 1 2 ( ( f ( θ ) ) 2 ) d θ A = \int^b_a \frac{1}{2} ((f(\theta))^2)d\theta A = ∫ a b 2 1 ( ( f ( θ ) ) 2 ) d θ (or A = ∫ a b 1 2 r 2 d θ A = \int^b_a \frac{1}{2}r^2 d\theta A = ∫ a b 2 1 r 2 d θ )
Area bounded by f ( θ ) f(\theta) f ( θ ) and g ( θ ) g(\theta) g ( θ ) f ( θ ) , g ( θ ) ≥ 0 f(\theta),g(\theta) \ge 0 f ( θ ) , g ( θ ) ≥ 0 on [ a , b ] [a,b] [ a , b ] and 0 < b − a ≤ 2 π 0 < b-a \le 2\pi 0 < b − a ≤ 2 π ⇒ A = 1 2 ∫ a b ( ( f ( θ ) ) 2 ) d θ − 1 2 ∫ a b ( ( g ( θ ) ) 2 ) d θ = 1 2 ∫ a b ( ( f ( θ ) ) 2 − ( g ( θ ) ) 2 ) d θ \Rightarrow A = \frac{1}{2} \int^b_a ((f(\theta))^2)d\theta - \frac{1}{2} \int^b_a ((g(\theta))^2)d\theta =\frac{1}{2} \int^b_a ((f(\theta))^2 - (g(\theta))^2)d\theta ⇒ A = 2 1 ∫ a b ( ( f ( θ ) ) 2 ) d θ − 2 1 ∫ a b ( ( g ( θ ) ) 2 ) d θ = 2 1 ∫ a b ( ( f ( θ ) ) 2 − ( g ( θ ) ) 2 ) d θ
# Arc LengthThe arc length of L = ∫ a b ( d x d θ ) 2 + ( d y d θ ) 2 d θ = ∫ a b r 2 + ( d r d θ ) 2 d θ L = \int^b_a \sqrt{(\frac{dx}{d\theta})^2 + (\frac{dy}{d\theta})^2} d\theta = \int^b_a \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta L = ∫ a b ( d θ d x ) 2 + ( d θ d y ) 2 d θ = ∫ a b r 2 + ( d θ d r ) 2 d θ
# Reference蘇承芳老師 - 微積分甲(一)109 學年度 - Calculus (I) Academic Year 109